
A leading health and life insurance provider in the United Kingdom faced mounting 
challenges in managing test data as it modernized its IT systems. The company had 
recently transitioned to a microservices-based architecture to enable faster innovation and 
greater scalability. However, this modernization effort introduced new complexities into 
their software testing practices, particularly around Test Data Management.

While microservices-based architecture brings many advantages at many levels, testing 
these systems is incredibly complex for several reasons, including test data. The test 
data requirements for microservices-based testing are more complex and dynamic than 
traditional applications due to the distributed nature of the architecture. The chart below 
highlights how microservices testing differs from traditional database testing.

Overview

HEALTH AND LIFE INSURER TRANSFORMS 
TEST DATA MANAGEMENT

CASE STUDY



Traditional methods—such as pre-loading test databases with anonymized production 
data—were proving insufficient, slow, and increasingly risky under strict GDPR 
regulations.

The organization sought a solution that would allow them to accelerate testing cycles, 
improve test coverage, and maintain full compliance with data privacy standards, all while 
adapting to the dynamic, decentralized nature of their new architecture.

AREA TRADITIONAL DATABASE 
APPLICATION MICROSERVICES-BASED SYSTEM

Architecture Monolithic, tightly coupled Distributed, loosely coupled

Testing Scope Primarily UI, Backend, and 
Database interactions

Individual services, interactions, 
contracts, and messaging

Data Management Centralized DB (easy to manage) Decentralized DBs, polyglot persistence

Test Complexity Low-to-medium; fewer 
dependencies

High; numerous interdependent 
microservices

Test Environment 
Setup

Typically static and easier to 
configure

Complex orchestration; dynamic 
environments

Deployment Impact Less frequent deployments, lower 
complexity

Frequent deployments, each needing 
independent tests

Service 
Dependencies Limited dependencies Multiple dependencies, external APIs, 

message brokers

Performance Testing Simpler, single DB bottlenecks Complex; multiple points of failure

Integration 
Complexity Moderate, mostly DB-oriented High; numerous communication 

channels



As the insurer expanded its services and technology footprint, its testing teams 
encountered significant obstacles:

Complex Test Data Needs Across Microservices: Each microservice had distinct data 
requirements, often involving intricate interdependencies. Traditional approaches, like 
batch loading data into staging environments, were cumbersome and error prone.

Manual Data Creation Bottlenecks: Creating advanced test scenarios—such as those 
supporting wellness reward programs, lifestyle-based underwriting, and claims 
adjudication workflows—required extensive manual effort. This process was time-
consuming and lacked consistency.

API-Centric Testing Requirements: The microservices model demanded that test data be 
injected directly into APIs during test execution, rather than being staged in a database 
ahead of time.

Compliance Risks: Continued reliance on production-like data, even when anonymized, 
posed GDPR compliance concerns, amplifying the urgency for a safer and more flexible 
alternative.

The company needed a modern test data solution that was dynamic, scalable, and fully 
compliant with evolving privacy laws.

To address these challenges, the insurer turned to GenRocket—a leading provider of real-
time synthetic test data generation technology.

GenRocket’s solution was implemented with a focus on dynamic, on-demand data 
provisioning. Instead of preparing datasets in advance, synthetic data was generated at 
runtime and injected directly into microservices via their APIs. This was accomplished 
using GenRocket’s RESTAPI Receiver, which seamlessly created and delivered context-
aware data at the moment it was needed, eliminating the need for persistent storage in 
any environment.

At the core of this implementation was GenRocket’s unique Design-Driven Synthetic Data 
paradigm—a transformative approach to test data provisioning that empowers testing 
teams to design exactly the data they need for any scenario. This design-driven strategy 
ensured synthetic data was not only timely and compliant, but also intelligently aligned to 
business logic, workflows, and test objectives.

The Test Data Challenge

The GenRocket Synthetic Data Solution



The key elements of GenRocket’s synthetic test data deployment included:

Test Data Modeling via Self-Service Test Data Cases: Testing teams used GenRocket’s self-
service capabilities to design Test Data Cases that reflected realistic and comprehensive 
insurance scenarios. These included:

•	 Configurations for health and life insurance policies
•	 Applicant profiles with diverse health attributes and risk classifications
•	 Eligibility paths for wellness reward programs
•	 Positive, negative, and edge cases to test business rules and exception handling

Referential Integrity Maintained Across Services: GenRocket’s engine ensured that data 
dependencies across services remained intact without relying on pre-stored datasets, an 
essential feature for end-to-end workflow testing in a distributed system.

Integration with CI/CD Pipelines: GenRocket’s real-time data generation plugs seamlessly 
into CI/CD workflows, enabling automated and continuous testing. Traditional TDM tools 
typically struggle in this area, as they often depend on static, pre-generated datasets that 
don’t align well with agile pipelines.

Direct Data Injection into Microservices: GenRocket eliminates the need for intermediate 
scripts or staging databases by injecting synthetic data directly into microservices at 
runtime. This is a major contrast to traditional TDM tools, which often rely on complex 
scripts to extract and load data, introducing extra layers of complexity and risk.

Data Consistency Across Systems: Testing microservices-based systems requires tailored 
test data strategies that differ from traditional applications. Each microservice manages 
its own data, so test data must be service-specific yet consistent across services for end-
to-end testing. GenRocket is the only TDM tool that natively supports simulating APIs and 
publishing to MQs as part of test data delivery pipelines. And the platform is very easy to 
scale horizontally, ideal for distributed, containerized environments.

The introduction of GenRocket revolutionized the company’s test data management 
strategy.

Test data that once took days to prepare was now provisioned in seconds, tailored exactly 
to each test’s requirements and injected directly into the appropriate microservice. 
The QA teams could easily simulate a wide variety of real-world insurance scenarios, 
while automation engineers integrated dynamic data generation seamlessly into CI/CD 
pipelines, greatly accelerating software release cycles.

A Successful Outcome



No Data Storage Required: Test data is generated on demand and delivered at runtime, 
with no persistence in databases or staging environments.

Faster Test Cycles: Data provisioning time was reduced from days to minutes, significantly 
accelerating test execution and feedback loops.

Higher Test Coverage: The ability to model positive, negative, and boundary conditions 
enriched test coverage and improved defect detection earlier in the SDLC.

GDPR Compliance: By eliminating the use of production data, the solution fully adheres to 
GDPR requirements, reducing legal and security risks.

Scalability and Flexibility: The dynamic data generation model easily scales across new 
microservices as the insurer’s technology ecosystem grows.

By adopting GenRocket’s synthetic data generation platform, this UK-based health and 
life insurer successfully transformed its approach to Test Data Management. In doing so, 
they not only modernized their testing practices to match the demands of a microservices 
architecture but also improved compliance, increased testing efficiency, and empowered 
their DevOps initiatives.

By generating synthetic data dynamically and tying it directly to the specific test 
case being executed, the insurer was able to overcome the challenges of API-driven 
microservices testing without compromising data privacy or quality.

With GenRocket’s Design-Driven Synthetic Data at the foundation of its test data strategy, 
the company now views test data not as a bottleneck, but as a strategic enabler for faster 
innovation, higher software quality, and greater agility in the competitive insurance market.

Importantly, the company achieved full GDPR compliance by using completely synthetic, 
non-identifiable data throughout the testing process—eliminating the need to mask or 
subset production data.

Key Benefits Realized

Take-Aways


