
FINANCIAL SERVICES CASE STUDY
Controlled Test Data for Payment Processing Applications

APPLICATION ENVIRONMENT
Billions of debit and credit card transactions take place every year representing trillions of dollars
in purchases and payments that are processed by financial services companies. Each of the leading
credit card companies in the US manage millions of cards issued to business and consumer card
holders and process all of their payment transactions on a daily basis. The ability to accurately,
efficiently and securely process these payments is the lifeblood of any financial services company.

In this case study, we examine the role of test data used by quality assurance teams to ensure
their payment processing applications are rigorously tested for defects, compliance with data
interchange standards and performance under heavy load conditions. To protect the privacy
and security of cardholders, quality assurance testing must be conducted without the use of any
Personally Identifiable Information (PII) during test operations.

Payment processing software has become
highly sophisticated in its ability to manage
complex electronic payment processes.
Software must support merchants in a variety
of vertical markets (e.g., restaurant, hospitality,
e-commerce, etc.) and service cardholders with
a wide assortment of card categories, incentive
and loyalty programs, credit histories and
spending limits for both consumer and business
accounts.

In the restaurant industry for example, a two-
step process is required – the first step is a
pre-authorization for an estimated amount (the
charge for the meal prior to applying a tip for the
server) followed by a post-authorization in which
the actual amount of the transaction is recorded.

TEST DATA CHALLENGES

At the end of each business day, merchant accounts must be closed or settled. Upon settlement,
the movement of funds takes place with notifications to the card-issuing bank for billing the
cardholder and the settling of accounts between banks. The merchant receives payment from the
issuing bank for the transaction amount minus appropriate processing fees.

Payment applications must be capable of processing millions of transactions on a daily basis.
Needless to say, they must calculate payments, processing fees and settle transactions with
absolute precision, all while protecting the privacy of all parties involved.

To accurately collect and process this diverse transaction information, it must be structured and
formatted as a data feed that conforms to a well-defined data interchange format. Sometimes
these data feeds are standardized and sometimes they are not. In this case study, we profile a
major financial services company that has created their own proprietary data feed format for
collecting transaction data and processing payments.

In order to test their payment processing application, the QA team at this financial services
company determined their data feeds must be simulated in a highly controlled fashion. To
reproduce complex transaction data feeds, the team copied a subset of their production data and
prepared it for testing. Production data is attractive because it contains real transactions in the
proper data interchange format. However, to prepare the data for testing, it had to be laboriously
reworked by hand to create the data variations and permutations needed for test cases while
removing all sensitive customer and merchant information.

It took the QA staff 160 man-hours (an entire man month) to build a test data set. Because the
data interchange format was revised every six months, the number of man-hours required for
test data provisioning effectively doubles over the course of a year. The tedious nature of the
provisioning process placed limits on the variety of test data available for functional, integration
and regression testing. And the limits on the volume of data provisioned was impacting their
ability to perform the load and performance testing required to simulate heavy transaction loads.
In the end, they concluded there were too many problems associated with using production data
alone for testing purposes. The following summarizes their rationale.

Without manual modification, test data copied from production data can only test for conditions
represented by a given data subset. It does not provide the QA team with the necessary data to
test edge case conditions, the presence of invalid data values, or specific input value combinations
that might uncover software defects. To maximize code coverage under all potential operating
conditions, test data must be controlled to simulate data feeds that contain all of the data
variations required by each test case and its assertions.

Business and IT leaders at this financial service company were very concerned about data privacy.
The risk of a data breach that might expose sensitive customer credit information was too great
when considering the legal and financial consequences. This risk was further compounded by the
fact that much of the testing was being performed by offshore contract resources, limiting the
internal control over the handling of sensitive customer data.

Production data is not controlled data

Production data is not secure data

With these issues in mind, the QA team decided to evaluate commercial solutions for provisioning
the volume and variety of test data they needed for testing. They identified the following test data
provisioning requirements for testing their payment processing application.

1.	 Test data must be formatted according to internal data interchange specifications

2.	 Specified values are needed for methodically testing control codes and input variables

3.	 Test data must follow specific workflow patterns used in processing payments

4.	 Test data must allow for assertions to validate specific test outcomes

5.	 Real-time calculations must be performed to validate accumulated totals

6.	 Queries to an external database must be integrated with the use of test data

7.	 A “feature file” containing test case scenarios must be used to control the data

8.	 Referential integrity between all columns and data tables must be assured

9.	 Test data must be devoid of personal customer and merchant credit information

10.	Test data files must scale to 20 million rows to simulate heavy transaction loads

QA team leaders first explored using one of the major Test Data Management (TDM) systems to
securely provision test data from the production environment. They encountered all of the issues
cited above and found these systems were not able to successfully create 20 million rows of
masked, patterned and controlled test data.

Data masking is the conventional approach often used for mitigating the security risks of working
with production data. However, masking all of the PII contained in the transaction data feeds
used by payment processing systems is a monumental task. Transaction data feeds are complex,
nested, fixed file data structures that contain control codes, record types, accumulated transaction
values, and calculations for reward points and cash-back incentives along with real card holder and
merchant account numbers and credit information. Finding and masking the sensitive information
in this complex data stream while preserving the referential integrity of the data values is both
daunting and time consuming.

Payment Processing Test Data Requirements

Secure, high volume production test data is not practical

The new custom GenRocket components created for this solution are as follows:

•	 FeatureFileCreatorScript: Used to generate a “Feature File” of 1 to 1,000,000 rows or more

•	 FeatureFileGen: The GenRocket generator used to query columns in a “Feature File”

•	 SegmentDataCreatorReceiver: Creates various segment files to represent the many data
elements used in a typical payment transaction process

•	 SegmentMergeReceiver: Merges multiple segment files in the proper sequence and
hierarchy to produce a consolidated payment transaction file

•	 GenRocket API Script (300 Lines): Integrates the test data generation process with test
cases and ensures proper relationships of data in a dynamic data hierarchy

The following workflow diagram illustrates the process used by testers to create payment
transaction data for any type of testing, including functional, integration, regression, performance,
security and compliance testing.

THE GENROCKET SOLUTION
The team then evaluated the GenRocket TDG platform and the use of real-time synthetic test data
to meet their needs. They presented their requirements to GenRocket and within three weeks
GenRocket was able to provide them with a fully working proof of concept. First, GenRocket
created a custom test data generator to recreate the “feature file” used to control test case
conditions. This new data generator works in combination with custom test data receivers that
format the data to match the company’s data interchange specification. Then a custom script
was created to implement an API integration between their testing tools and the GenRocket TDG
platform along with test data scenarios that contain instructions for generating test data in the
required volume and variety that is needed for comprehensive testing.

GenRocket worked closely with Channel Partner, one of its premiere testing partners to produce
an operational test environment that was ready for immediate use by the testing team. Here is a
summary of the steps taken to set up their new test data provisioning platform:

1.	 First Channel Partner and GenRocket used the financial company’s data model to create
GenRocket domains and attributes to simulate their payment processing database.

2.	 Then the Channel Partner team used GenRocket data generators to model the company’s
business data for each GenRocket attribute. GenRocket created a custom FeatureFileGen
generator for the purpose of reading “Feature File” data into GenRocket attributes.

3.	 The GenRocket team then implemented custom data receivers to create formatted data.

4.	 Together, GenRocket and Channel Partner created GenRocket test data scenarios using the
above components to consume “Feature File” data and produce the test data output.

5.	 Finally, the GenRocket team created a groovy script that used the GenRocket API to
orchestrate the entire process.

1.	 Generate Feature
Files

2.	 Run GenRocket API
Script

3.	 GenRocket
Scenarios Run and
Generate data

4.	 FeatureFileGen

5.	 Segment-
DataCreator-
Receiver

6.	 SegmentData-
MergeReceiver 7.	 File Output• Tester creates Feature File

by hand for their specific test
case.
• User can also run the
FeatureFileCreatorScript to
generate multiple Feature
Files for testing a large load.

• User runs GenRocket API
script which calls GenRocket
Scenarios.
• The script manages the
complex hierarchy of data for
the final output file.

• Scenarios run when
instructed by the API script
and start generating data in a
segment format.

• Certain Attributes have the
FeatureFileGen assigned to
them.
• This Generator loads Feature
File data which is used by
other Generators to query a
database to generate data.

• This Receiver segments the
raw data to be consumed by
SegmentMergeReceiver.

• This Receiver merges the
segments from the Segment-
DataCreatorReceiver into a
single file.

• GenRocket outputs a single
file that can be used for
testing.

The test data solution created for this complex software testing challenge illustrates the power and
flexibility of the component-based architecture used by the GenRocket TDG platform.

GenRocket TDG breaks down the process of test data generation into 5 components that provide
total control over the nature of the data to be generated.

Domains are at the highest level and define the category of data to be generated. They are
analogous to a data table.

Attributes define the data elements of the domain that will be generated and are analogous to
columns in a data table.

Generators are components that automate the generation of test data according to domain and
attribute definitions. The GenRocket platform contains over 200 data generators and more are
being developed all the time.

Receivers are GenRocket components that format data in the output needed for testing (e.g., XML,
JSON, CSV, etc.). There are currently more than a dozen GenRocket receivers including the custom
receivers created to simulate the payment transaction data described in this case study.

Advanced Technology Streamlines Test Data Provisioning

1. Domains

2. Attributes

3. Generators

User

First Name Password Phone Number

NameGen EncryptGen PhoneNumberGen

Finally, GenRocket scenarios provide all of the
instructions for generating the final test data
output needed for a given test case as defined
by domains, attributes, generators and receivers.
Scenarios can be used to invoke various data
generators and receivers, perform real-time
calculations, query databases, blend synthetic
data with production data, create patterns and
permutations of data and specify the number of
data rows needed for testing.

GenRocket’s component-based architecture
empowers GenRocket to customize test data for
any complex data feed in a way no other TDM or
TDG platform can duplicate. GenRocket has the
ability to rapidly develop custom data generators
and receivers to create controlled, patterned
and conditioned test data to simulate any data
feed with 100% secure synthetic data. The ability
to provision test data on-demand and using a
self-service model streamlines the entire testing
process. And a powerful GenRocket API provides
seamless integration with all of the latest test
automation tools and frameworks.

1. Domains

2. Attributes

3. Generators

4.	 Test Data
Receiver

Output

•	 XML, JSON,
CSV, SQL, etc.

•	 JDBC, TEST,
Web Services

•	 Your required
test data output

5. Scenarios

•	 Generate 3 Organizations

•	 Generate 3 Departments for each
Organization

•	 Generate 3,000 users for each
Department

•	 Output to XML and SQL format

1. Domains

2. Attributes

3. Generators

4.	 Receiver

The process flow for how these components are used by the GenRocket platform during actual
test data generation is illustrated by the following diagram. At the top of the diagram, a Groovy
script using the GenRocket API controls the process in a way that is fully adaptable to a variety of
testing procedures.

The diagram below shows the relationship between the components created by GenRocket to
solve this sophisticated payment transaction test data challenge. Together they enable rapid
provisioning for any pattern of test data needed to simulate any payment transaction workflow
with secure, real-time synthetic test data.

<<component>>
FeatureFileCreatorScript.groovy

FixedFileConfig.xml

uses

uses

uses

uses

uses

uses

uses

uses
<<component>>

SegmentCreatorScript.groovy
<<component>>

MergeScenario.grs

<<component>>
Definition00Scenario.grs

<<component>>
Definition05Scenario.grs

<<component>>
Definition02Scenario.grs

<<component>>
Definition09Scenario.grs

<<component>>
Definition99Scenario.grs

<<component>>
FeatureFileCreatorScript.grs

Using the API, the script loads and executes GenRocket components to simulate the “Feature File”
and configures the test data feed with appropriate record types and input values. Multiple record
types that designate data feed segments are required to simulate the entire payment transaction
process and test cases used for testing them. Segments are generated by one of several
SegmentDataCreatorReceiver components.

The SegmentMergeReceiver is a component used to assemble a composite test data file
containing multiple nested segments as specified by the “Feature File” and generates a complete
transaction data feed that is ready for use by testers.

A major benefit of the GenRocket solution is the ability to create very high volumes of data
in a very short span of time. In the table below, the time to create the “Feature File” and data
segments and then merge them into a composite test data file that represents complete payment
transactions are given for 1 million rows to 20 million rows of data.

<<component>>
SegmentDataCreator.groovy

<<component>>
SegmentMergeReceiver

<<component>>
GenRocket API

Data In Memory

File

<<component>>
DefinitionScenarios

<<component>>
Segment Data

<<component>>
SegmentDataCreatorReceiver

<<component>>
DefinitionScenarios

<<component>>
SingleMapReceiver

<<component>>
MergeScenario

uses

uses

uses

uses

loadsloads

generates

generates

consumes

generates

The total time to create 1 million rows is less than 30 minutes while the time to create 20 million
rows is less than 8 hours. Once a final payment transaction test file has been created, it can be
reused or regenerated in its original state for subsequent testing (e.g., nightly regression test)
at any time and on-demand. When compared with the manual data provisioning process used
previously, the team was saving 320 man-hours per year representing a major cost and time
savings for the organization.

This sophisticated GenRocket TDG solution can be replicated for any data feed testing
requirement in financial services, healthcare, eCommerce, or any environment where complex
data structures must be replicated under controlled conditions using secure, real-time on-demand
synthetic test data.

Transactions

Feature File
Creation Time

Segment File
Creation Time

Merge File
Creation Time

Feature
File Size

Segment
Directories FILE SIZE

1,000,000 2m:54s 17m:52s 1m:1s 77.4MB 11 420.4MB

5,000,000 14m:56s 1h:35m:14s 4m:55s 386.9MB 51 2.1GB

10,000,000 30m:44s 3h:13m:7s 10m:4s 773.9MB 101 4.2GB

20,000,000 57m:3s 6h:29m:32s 20m:27s 1.55GB 202 8.41GB

