
A major health insurance company operating in more than a dozen US states offering 
both government and privately funded healthcare plans and serving tens of millions of 
subscribers.

The insurance company needed to ensure accuracy in its claims processing systems. 

• The accuracy of insurance claims processing is an industry-wide problem with 
estimates of up to 80% of submitted claims having errors resulting from human 
error or deliberate fraud. 

• Inaccurate claims result in overcharges and revenue leakage for healthcare payers 
and delayed payments for providers. The insurance carrier in this case study 
decided to invest in new systems to dramatically reduce errors and streamline the 
entire claims processing cycle. 

As part of their digital transformation, the company is migrating from a monolithic in-
house claims processing system to a modern distributed system to improve speed, 
accuracy, efficiency, and security.

The Client

Business Challenge

MAJOR HEALTH INSURANCE 
CARRIER FULLY AUTOMATES 
THE DELIVERY OF 
SYNTHETIC TEST DATA



• The company decided to undertake a major in-house software development 
effort to achieve all these goals with cutting edge development tools and a fully 
automated software test environment.

• It was mandated that no Protected Health Information (PHI) would be used 
in any phase of the software development and testing process. As a result, a 
comprehensive synthetic test data solution became a critical component of this 
software migration initiative. 

• To accurately simulate the many types of data exchanged during a claims processing 
workflow, the GenRocket platform was deployed to generate synthetic transaction 
data in the X12 EDI format to deliver 100% HIPAA compliant test data. 

• The GenRocket platform supports both the current X12 EDI 837 standard (5010) 
and the next generation (8020) that covers expanded transaction sets for wearable 
medical devices and IoMT technologies.

• A typical claims data feed contains a complex assortment of data for many 
subscribers having many types of treatments rendered by multiple providers. 

• Such feeds needed to be tested under various conditions to ensure they function 
properly.

GenRocket Synthetic Test Data 

X12 EDI XSD

• Readily available X12 EDI XSD templates to generate the volume or variety of 
synthetic data in the proper format for any category of software testing.

CI/CD Pipeline Integration

• Automate the delivery of synthetic data directly into a CI/CD pipeline to accelerate 
every stage of the software testing lifecycle. 

 
Center of Excellence (CoE) Model

• Created a small team of test data engineers fully trained on the four-stage 
GenRocket methodology: Model, Design, Deploy, and Manage. 

• CoE is responsible for modeling and designing all Test Data Cases (the instruction 
sets used by GenRocket to control the synthetic data generation process at runtime. 

• Once designed, Test Data Cases are called and executed by test case scripts 
developed for each stage of automated testing.

Requirements

The Solution



1. Test Early (Shift Left)
Testing early places a strong emphasis on unit testing to catch defects early when 
they are easier and less costly to resolve. Synthetic datasets can be designed in 
small increments so they can be aggregated into larger and more sophisticated Test 
Data Cases as the testing lifecycle progresses. It also allows functional testing to be 
performed at the module level and allows system testing to focus on integration issues.

To ensure thorough and accurate testing of its health claims processing network, the 
insurance company focused on the following testing best practices utilizing GenRocket 
synthetic test data.

Testing Principle - 1: Test Early (Shift Left)

Benefits: Early detection, saves cost

• Identify test data requirements as early as possible
• Identify test data as early as possible
• Generate claims and share with developers
• Do as much testing as possible during Unit Test
• QA should support Unit Test (Helps QA learn from Developers)
• Helps understand the scope of the deliverables among business, development and QA

9-Step Implementation Framework

TDM Tool and Framework - Quality Benefits
SHIFT
LEFT

Test Everything

Test Everytime

Test Early

Test Continuously

Involve Testers in every stage

Prevention vs. Detection



2. Thorough Regression Testing
Regression testing is critical to prevent defect leakages. This saves time and money. 
The insurer reused GenRocket’s Test Data Cases to allow for full regression testing as 
each new feature is developed and added to the release pipeline.

3. Test Environment Configuration
Test environment configuration played an important part in this solution. Three 
separate test environments were deployed for testing code as it progresses up the 
software testing pyramid. There is also a final staging area to provide a production 
look-alike environment to simulate real-world behavior. This enabled the insurer to 
identify issues that may be related to the configuration of each test environment.

Testing Principle - 2: Thorough Regression

Testing Principle - 3: Identify Issues Related to Environment Configuration

Benefits: Prevents defects leakage, Quality Deliverables, Cost Saving

Benefits: Go or No-Go Decision, scope definition

• Start building test data cases with the first story
• Build Test Data Cases incrementally as feature development progresses
• Aggregate Test Data Cases into Chapters, Stories, and Epics
• Generate claims and test for each increment
• Conduct full regression testing at each stage

• Execute Test Data Cases as code is promoted to upper–level environments
• Identify and resolve any configuration issues
• Validate test environment readiness

TDM Tool and Framework - Quality Benefits

TDM Tool and Framework - Quality Benefits

Development Validation Production

Regression Testing

Feature 
Development

Aggregate 
Test Data

Cases

Full 
Regression 

Testing



Testing Principle - 4: Performance Test at every test level

Benefits: Early Detection and Prevention, Time, Resource and Cost Saving

• Reuse previously executed Test Data Cases as much as possible
• Add additional members and providers to achieve volume of claims
• This may be seen as redundant testing.
• It’s an overlapping testing to prevent surprises.
• Increases tester confidence
• Increases predictability

TDM Tool and Framework - Quality Benefits

C
o

m
p

le
te

ne
ss

Time

SOFTWARE
TESTING
LEVELS ACCEPTANCE TESTING

SYSTEM TESTING

INTEGRATION TESTING

UNIT TESTING

4. Performance Test at Every Level
Because GenRocket’s Test Data Cases are reusable, the insurer can performance test 
at every level. Any synthetic data design can be quickly modified to add more records 
using the same data structure and data generation rules. This allows performance 
issues to be detected early and at every stage of development. The practice of 
repeating tests with higher data volume increases confidence in the quality of the code 
and predictability of how it will behave at various load and usage scenarios.



5. Parallel Test at Every Level
Because this insurance company is migrating from a legacy application to a new 
claims processing system, it’s important to test both systems in parallel at every stage 
of development. This identifies any functional discrepancies or missing requirements 
during the early stages.

6. Reuse Test Data Cases
Reusability is fundamental to the achieving cycle time acceleration. It allows for the 
centralized design and management of Test Data Cases so they can be deployed using 
a distributed self-service solution for DevOps teams. The insurance company uses a 
TDA framework where all test data requests submitted by users, along with the Test 
Data Cases created by CoE staff, are stored in a library that is both categorized, and 
revision controlled.

Testing Principle - 5: Parallel Test at every test level

Testing Principle - 6: Reusability

Benefits: Identify functionality discrepancies in early stage, identify missing 
requirements, identify enhanced functionality in new system.

Benefits: Increases Efficiency and Productivity

• Reuse existing Test Data Cases
• Send claims to both systems simultaneously
• Identify discrepancies and review with development team
• Document resolution decisions for future reference.

• Reuse existing Test Data Cases
• Categorize in a centrally accessible library
• Version control all Test Data Cases
• Enable a searchable library for distributed access

TDM Tool and Framework - Quality Benefits

TDM Tool and Framework - Quality Benefits

Test
Data 1

Test
Data 2

Test
Data 3

Test
Data 1

Test
Data 2

Test
Data 3

Set-up Environment

Old Environment New Environment

Output Output
Comparison of Output



7. Traceability of Test Results
All tests conducted by the TDA framework are tracked by measurable metrics and are 
fully traceable. This allows for a quality audit of the entire application development 
process. All Test Data Cases are linked to every test case script as well as the results of 
each test execution. Traceability ensures the testing process is always fully validated 
and documented.

8. Test with Valid Data
At the final stage of testing, a user interface testing tool is used to test the fully 
integrated system to validate outcomes and compare them with expected results. 
Testing with valid data at this stage ensures predictability of the software under the 
widest possible variety of conditions and simulates real-world operation of the code.

Testing Principle - 7: Traceability

Testing Principle - 8: Test with valid data

Benefits: Measurable Metrics, Quality Audit

Benefits: Predictable outcome

• Link Test Data Cases with test cases and test executions
• The linkage can itself be proof for test evidence.

• Many variables can impact the claim processing and expected outcome.
• Testing with a compatible claim data is more important to achieve predictable outcome 

(expected result)
• UI testing tool will help identifying valid/compatible claim data.

TDM Tool and Framework - Quality Benefits

TDM Tool and Framework - Quality Benefits

Traceability Matrix

EPIC

FEATURES

USER
STORIES

TEST
CASES

BUGS



9. Measure Test Results
Collecting test evidence makes all data available for audit purposes and captures 
important quality metrics for the entire software testing process.

Testing Principle - 9: Test Evidence

Benefits: Quality Metrics, Test Evidence for Audit Purpose

• Test Data Cases with test data can be used for test evidence.

TDM Tool and Framework - Quality Benefits

The Test Data Automation Framework established by this insurance carrier provides a 
scalable deployment model for distributed self-service as it incorporates Agile testing best 
practices across the entire development lifecycle. As a result, the DevOps team realized 
many benefits from this approach including: 

• Acceleration of total test cycle time

• Maximized coverage for all software under test

• Full performance and regression testing at every level

• Reusability of test cases and Test Data Cases

• 100% compliance with all HIPAA privacy laws

• Seamless transition to next-generation claims processing systems

The GenRocket solution delivered a clear and sustainable return on investment in the form 
of dramatic time savings, labor cost reduction, faster time to market, and increased quality 
of software deployed to production.

Outcome


