
MAINFRAME BANKING 
APPLICATION CASE STUDY

A large and rapidly growing multi-national bank operating in 32 markets is currently 
providing banking and financial products and services to over 8.5 million retail and 
business customers. The IT organization at the bank employs thousands of engineers who 
maintain hundreds of application systems and are geographically distributed across its 
worldwide operations. 

Like many financial institutions, the bank is investing heavily in digital transformation and 
improving its use of data and analytics to deliver a superior digital banking experience to 
its customers. The bank operates its core banking applications on mainframe systems that 
feed approximately 500 downstream systems representing a variety of applications for all 
lines of business within the bank.

Synthetic Data Enables Tech Transformation at Global Bank



The Test Data Management (TDM) team discovered GenRocket while trying to solve 
a tough software testing challenge – They wanted to generate synthetic data in IBM 
EBCDIC format based on a COBOL Copybook file structure and provision synthetic test 
data at scale. Their objective was to conduct end-to-end testing of batch data flows from 
their long-standing mainframe environment to newer distributed systems developed as 
part of the technology transformation initiative. End-to-end system testing is essential for 
validating the integrity of data as it flows between diverse systems across all areas of the 
bank’s IT infrastructure. 
 
Previously, the bank had to rely on EBCDIC test data provisioned from the production 
environment. This required a cumbersome process to requisition, copy, mask, and subset 
the data for testing and was not considered a scalable approach. That’s because the 
bank maintains over 5,000 COBOL copybooks that represent wide-ranging file structures 
and data domains. Copybooks define the data that flows between mainframe systems 
and a centralized data translation gateway that reformats the data for consumption by 
downstream systems.

The test data team needed EBCDIC test data with high variety and in high volume to 
perform end-to-end testing across this complex environment. To validate the integrity 
of all connected systems and their many data flows, EBCDIC test data is needed for all 
file structures and formats. GenRocket has proven to be an ideal solution to meet this 
challenge. It’s Test Data Automaton (TDA) platform can generate realistic synthetic data 
in any data format, with complete control over data variety and volume while maintaining 
full referential integrity.

Core Banking Systems
Downstream Data Flow

Copybook

Core Systems

Data Feed

EBCDIC

Data Feeds

Downstream
Systems

Web Applications, Analytics, Mobile Services

Non-EBCDIC

Mainframe Data
Translation
Gateway



Generating synthetic EBCDIC data is a tough challenge because its structure and encoding 
scheme is completely different from modern file formats like CSV, XML, or JSON encoded 
with ASCII or Unicode character sets. EBCDIC is derived from the original data format 
used by IBM mainframe peripherals (e.g., disk drives, tape devices and card readers) and 
uses 8-bit character encoding with fixed-length fields to define its data elements. This is in 
sharp contrast with the variable length records and delimiting characters found in today’s 
most used data formats.

Additionally, COBOL copybooks often include clauses that REDEFINE some fields based 
on the value of other fields or use the OCCURS/DEPENDING_ON clause to define variable 
length arrays. This presents a difficult data translation challenge, but one that is performed 
with speed and efficiency by the bank’s data translation gateway.

The challenge for synthetic data generation is to accurately simulate EBCDIC data 
flows based on the data models defined by thousands of copybooks while ensuring the 
accuracy and validity of the synthetic data being generated.

Prior to GenRocket, there was no synthetic data platform capable of generating test data 
using the EBCDIC file format, especially with the speed and control over data variety 
offered by its Test Data Automation platform. GenRocket’s ability to import COBOL 
copybooks containing the EBCDIC data model directly into its platform, automatically 
assign generators from its intelligent data warehouse, and apply rules for controlling data 
volume and variety provides an easy and automated approach to synthetic EBCDIC data 
generation. 

The EBCDIC Test Data Generation Challenge



Hybrid cloud solutions like GenRocket’s Test Data Automation (TDA) self-service 
platform offer the ease and agility needed by the bank for the era of cloud-base testing. 
With GenRocket, DevOps teams collaboratively design the exact data needed for testing 
in the GenRocket Cloud, a secure SaaS solution hosted on an AWS private cloud. Once 
designed, a template for the required test data is downloaded, in the form of a Test Data 
Case.

This template is a secure encrypted file containing only the metadata required to generate 
test data using the GenRocket Runtime Engine. This engine can be integrated with any 
test automation tool and triggered to generate synthetic data in real-time during test 
execution using a physical machine on the customer premise, or a virtual machine in the 
customer’s private cloud.

The GenRocket Runtime Engine supports the virtualization environments of all major 
cloud platforms including Amazon Web services, Microsoft Azure, and Google Cloud 
Platform. Additionally, the GenRocket Runtime Engine and its resources can be packaged 
as a single portable image and deployed in a container such as Docker.

Flexible Cloud Deployment and DevOps Integration 



It’s easy to integrate GenRocket with any test automation tool and deploy its TDA 
technology into a fully automated release pipeline as illustrated below.

There are many ways that GenRocket can integrate into CI/CD pipelines within an Azure, 
Google Cloud, Amazon Web Services, or other cloud-based environment. GenRocket Test 
Data Cases and Scenarios can be launched using any of the following methods:

These integration methods provide developers and testers with many options for 
integrating GenRocket with virtually any toolset for software development and automated 
testing.

• Command line

• Batch file

• Shell scripts

• Scripting language

• Bash file (e.g., for Jenkins)

• Compiled language

• REST API

• Socket API

• GMUS (GenRocket’s Multi-User Server)



GenRocket has the potential to address many more use cases at the bank. There is 
virtually no category of data that cannot be synthetically generated by the system. That 
includes all forms of structured data, unstructured data and even image data can be 
modeled and generated on-demand and in any volume.

In addition to all forms of relational database environments, GenRocket can easily 
generate big data and simulate NoSQL databases and IoT data streams as well. The chart 
below provides several use case examples that are typically found in the financial services 
sector for GenRocket’s TDA platform.

Potential Synthetic Data Use Cases

GenRocket is also being used to simulate data feeds that represent complex workflows or 
event streaming platforms like Kafka. Here are some additional examples of the diverse 
synthetic test data types that can be generated by GenRocket.

• Synthetic Bank Checks

• PDF Forms

• NACHA

• BAI2

• Blockchain Nexo

• Parquet

• Avro



Cycle time reduction of 1400 hours and an increase in coverage for 
systems integration testing and performance from 30% to 80%.

Reduced test cycle time by more than 200 hours with an increase in 
component testing coverage from 0% to 50%.

Test cycle time reduction of more than 380 hours with an increase in 
regression and API performance coverage from 0% to 70%.

Saved over 1300 hours during the first 9 months of deployment with an 
increase in regression coverage from 0% to 50%.

Many financial institutions that have deployed the GenRocket platform experience a 
dramatic improvement in operational efficiency and quality. The impact is typically 
realized in the form of reduced test cycle time and increased test coverage. Here are 
some examples of the benefits experienced by one GenRocket financial services customer 
across multiple value streams.

GenRocket’s Test Data Automation platform can have a similar impact on any software 
testing operation. The system is designed from the ground up to accelerate the 
provisioning of test data, increase code coverage and reduce the total cost of ownership 
compared to traditional Test Data Management systems. 

PAYMENTS

DATA & ANALYTICS

BANK

CARD


