
FINANCIAL SERVICES CASE STUDY
Accurate, Controlled Test Data for Credit Card Testing

A major financial services company, managing billions of dollars in assets, provides a variety
of services including consumer and commercial banking, credit cards, auto loans and savings
accounts. Their credit card business alone represents millions of cardholders transacting billions of
dollars in annual purchase volume.

The credit card market has become the largest U.S. consumer lending market and continues to
expand by every measure of growth. Credit card providers are under intense competitive pressure
to deliver new and innovative products in the form of loyalty and reward programs, balance
transfers, cash advances and other perks.

This places a big demand on developers and testers to manage a continuous pipeline of software
enhancements and revisions. These applications interface with multiple systems as they execute
a massive volume of credit transactions and manage user accounts. As part of a regulated
industry, QA organizations are keenly focused on the accuracy and security of their information
systems. The financial services company profiled in this case study provides an example of the
rigorous testing and data provisioning requirements that must be followed when testing financial
application software.

THE NEED FOR SYNTHETIC TEST DATA

MEETING THE POC REQUIREMENTS

QA leadership for this organization wanted to eliminate a potential breach of sensitive customer
information, such as social security and credit card account numbers, during their testing process.
For this reason, they decided to evaluate the use of synthetic test data. They needed test data in
a variety of formats for testing multiple systems and databases, including ASCII, EBCDIC, Parquet,
JSON, and AVRO. The database environments include DB2, Oracle, SQL Server, Postgres, MySQL
and Snowflake.

Previously, the QA team pulled data from production and manually scrubbed it to remove sensitive
information and to create appropriate data combinations for testing. Now their goal is to automate
the process of provisioning secure, synthetic test data with full control over data volume and
variation with an ability to output the data in the multiple file formats described above. The QA
team was introduced to GenRocket by one of the company’s system integration partners and
decided to evaluate GenRocket’s Test Data Automation capabilities as part of a formal Proof of
Concept (POC).

The POC team identified two use cases, or stories, to conduct the POC. These stories describe
test data challenges and the criteria for a successful POC. Test data must be output in multiple
file formats. Some of these files require the control characters \x001 and ^A to act as delimiters
between nested data segments or to mark an end of file. For both stories, sample data files
were provided to GenRocket containing DDL to describe the table columns, primary keys, field
attributes and record counts.

The following CreditCard_Product attributes are to be populated

• id (unique)

• Product Description

• ACE

• AcquisitionStrategyCode

• CMID

• CPC

• TPC

• Type

• ProductID

• All Values must come from Provided File named “UseCase1”

For each credit card description, the corresponding data attributes must be generated in all
specified formats. The ASCII format requires a \x001 or Ctrl character ^A field separator.

Story 1: GenRocket populates the CreditCard Product File

The following CrossReference attributes are to be populated

• Possible_Plastic_Num_0 (unique)

• Non_NPI_1

• Possible_Driverlicense_2

• Possible_Plastic_Num_3 (Each row should be the same value as Possible_Plastic_Num_0)

• Possible_Acnt_ID\\Acnt_Num_4

• Non_NPI_5

• Non_NPI_6

• Non_NPI_7

• Possible_Loan_ID_Num\\Acnt_Num_8

• Possible_Loan_ID_Num\\Acnt_Num_9

• Non_NPI_10

• Non_NPI_11

• The details for each attribute should be obtained from the Data Profiler output which should
be used as the input to GenRocket.

Synthetic data must represent valid production data and contain name, address, social security
number and credit card number. Credit card numbers must have realistic values for Visa,
Mastercard, American Express and Discover formats and pass the Mod-10 algorithm check. Test
data files should be generated in all specified formats. ASCII formats must have \x001 or Ctrl
character ^A field separators.

Story 2: GenRocket populates the CrossReference File

THE GENROCKET SOLUTION

THE IMPACT OF TEST DATA AUTOMATION

The GenRocket Test Data Automation platform is a perfect match for these requirements.
Its component architecture allows testers to define data structures, select the required data
generators for each field, and match them with data receivers for the desired output format.

The GenRocket platform allows testers to import any data model using a database schema or
Data Definition Language (DDL) to automate the process of provisioning synthetic test data.
This ensures test data is generated with the correct data structure and parent/child/sibling
relationships between data tables.

Here is a sample DDL:

This level of control, flexibility, security and efficiency of test data provisioning was not possible
prior to GenRocket. As a result, the POC was highly successful. The implementation of GenRocket’s
Test Data Automation promises to bring a new level of data quality and test coverage to any QA
process. At the same time, the accelerated pace of data delivery will improve the efficiency of test
operations. Now software testing teams at financial services organizations can test at the speed of
development as they ensure the quality of testing and the security of data.

GenRocket has more than 250 data generators including 7 different data generators just for credit
cards. Generators have parameters that can be configured to accurately control the data values
that are generated. They are part of a Test Data Scenario that controls the quantity of test data
that is to be generated.

To support a wide variety of output formats, GenRocket has more than 50 data receivers including
two new receivers created for this POC – IBM EBCDIC and Parquet file formats. Any receiver can
be paired with any combination of generators to provide flexibility over the data values used for
testing and consistency of data used across multiple environments.

GenRocket worked with the QA team at this financial services company to automate the process
of importing the data model, configuring the data generators, controlling the record counts, and
generating test data on-demand and in the desired output format.

https://www.genrocket.com/component-based-architecture/
https://genrocket.freshdesk.com/support/solutions/articles/19000062835-how-do-i-import-my-data-model-into-genrocket
https://app.genrocket.com/browse/generators
https://app.genrocket.com/browse/receivers

