
CASE STUDY: TESTING DATA LAKE
APPLICATIONS IN FINANCIAL SERVICES

A multi-national banking and financial services corporation required comprehensive test data
automation for testing its data lake applications. The company offers financial products for retail
banking, direct banking, commercial banking, investment banking, wholesale banking, private
banking, asset management, and insurance services. They operate in more than 40 countries and
rank as one the world’s largest banks.

Increasingly, banks are using data lakes to turn big data into actionable business intelligence to
drive profitable business outcomes. Electronic data is growing at a phenomenal rate due to the
rise in online banking and digital transformation of the customer experience. The challenge and
opportunity presented by data lakes is how to accelerate the cycle time from raw data inputs
to actionable business intelligence through the use of data mining and analysis software. The
mandate for QA organizations is to ensure that quality data is used for business intelligence
purposes by performing comprehensive testing of its data lake applications.

Data lakes are repositories for large amounts of
data collected from multiple sources in a raw and
native format. They eliminate information silos
by combining data from diverse sources such as
electronic banking systems, IoT devices, social-
media sites, and internal-collaboration systems.
Data may be stored in structured, semi-structured
or unstructured formats.

THE TEST DATA CHALLENGE
The Bank issued a Request For Information (RFI) to evaluate a test data solution that would enable
multiple teams to perform a complete range of testing operations in a highly efficient and scalable
manner. They focused on synthetic test data generation because of the ability to produce highly
controlled data variations in multiple data formats and its inherent data security. They were looking
for a solution that would meet their needs for automated unit testing, exhaustive functional testing
and performance testing procedures.

GenRocket responded to the RFI with a complete Test Data Automation solution and participated
in a rigorous Proof of Concept (POC). The combined RFI/POC process included several test
data challenges. They were incorporated into four use cases that reflect their application testing
requirements. They also wanted to evaluate the management and scalability of the system. The
POC requirements are briefly outlined below.

The Bank required a platform to provide control over access to the system and its resources. They
also required reporting on various aspects of system operations.

• Install software and create admin user

• Create projects to perform various test cases

• Create a user account with read-only privileges

• Demonstrate effectiveness of security controls

• Demonstrate configuration process and audit trails

• Demonstrate deployment scalability and change management

• Demonstrate reporting and supportability options

This use case evaluates an ability to generate synthetic test data based on a supplied data model
(DDL) and using Data Manipulation Language (DML) to test database interactions. The data
structures must maintain referential integrity. Data must be formatted with variable length values
based on pre-defined rules and separated by a special delimiter. Here is a small sample of their
data requirements.

• Create test data tables preserving primary/foreign key relationships

• Create random data using multiple value ranges as specified

• Create data within a value range and concatenated with unique ID

• Generate unique data within a pre-defined value range

• Generate data within a value range and apply HASH8 on column values

• Perform a data insert and lookup function to a SQL database

Generate test data by importing a CSV file containing metadata that specifies the format the test
data must follow. Create a patterned file that includes a pre-defined label and a date stamp in the
format: YYYYMMDDHHMMSS.

• Generate 1-character string where one code is 95% of values with other codes random

• Generate 10-digit number with foreign key relationship to a table column in Use Case 1

• Demonstrate creation of insert statements based on the relationship of key fields

System Setup and User Account Management

Use Case 1: Generation of Insert Statements Based on DDL and DML

Use Case 2: Generation of Test File Based on Metadata

Generate test data by importing a CSV file containing metadata that specifies the format the test
data must follow and apply a number of business rules such as:

• Generate test data based on pre-defined allowed values

• Generate patterned test data to vary possible data ranges

• Generate variable length integers that are empty 50% of the time

• Generate 10-digit numbers with a foreign key relationship to column in separate table

• Generate account numbers with defined character positions and check digit remainder

This use case is designed to show how the number of records for a test case can be controlled.
Generate 3 test files and demonstrate control over record count, file size, and elapsed time.

• File 1 = 1,000 records

• File 2 = 100,000 records

• File 3= 1,000,000 records

• Concatenate a fixed file identifier with formatted time stamp

GenRocket’s component based architecture provides the flexibility to design any variation or
volume of test data with assured referential integrity. Powerful data generators and receivers allow
the Bank’s QA team to conduct exhaustive testing with extensive control over data combinations,
patterns and permutations. The ability to query external data sources allowed testers to combine
real-world production data with controlled synthetic data. The use of synthetic data provided total
security and compliance with privacy laws.

Because GenRocket’s test data is based on the customer’s data model, any database schema,
DDL file, or a metadata contained in a CSV file can be used to structure test data that accurately
reproduces the original database or file format. Data models can be imported and immediately
used to define test data scenarios for generating real-time test data on-demand.

Use Case 3: Generation of Test File Based on Metadata with Business Rules

Use Case 4: Generate 3 Files with Creation Time Stamp at Different Volumes

Modular Architecture

Model-Based Test Data

THE GENROCKET SOLUTION
GenRocket worked closely with one of its global IT services partners to jointly conduct the POC
with the Bank. The process showed how GenRocket can combine speed of provisioning with
full control over data quality in a way no other test data solution can match. This successful
POC resulted in the selection of GenRocket as the best solution for the Bank’s Data Lake testing
requirements. Several GenRocket capabilities combined to make this evaluation a success.

https://www.genrocket.com/component-based-architecture/

The Bank POC called for extensive use of GSelf-Service, GenRocket’s self-service provisioning
capabilities. GSelf-Service includes Test Data Rules, a feature that allows the configuration of test
data based on business rules and workflow logic. Test Data Queries is a feature used to query
production data values from databases or files and dynamically blend that data with synthetically
generated data. Test Data Cases makes it easy to quickly and easily modify Test Data Scenarios to
meet the requirements of any given test case. Test Data Cases can be defined for unit, functional,
integration, API, performance, regression and other types of tests.

In addition to its technology capabilities, GenRocket also provided the scalability and management
features that were required by this large multi-national banking operation. The Test Data Scenarios
configured for specific test procedures can be managed and versioned within the context of a
GenRocket Project. Team Permissions ensure users are only able to access the Projects appropriate
for them and controls access to information such as the Domains or Scenarios for those Projects.
The Organization Admin status is the highest level of authority and is required to manage users,
team permissions and access to GenRocket system resources.

GenRocket has numerous ways to integrate into test automation frameworks including, two
GenRocket Real-Time Engines, the GenRocket Socket Engine, the GenRocket REST Engine and
the GMUS (GenRocket Multi User Server) which allows many users to generate data via a central
client application. These engines allow external applications to launch test data scenarios in
real-time during test operations. They also allow the platform to be seamlessly integrated with
the Bank’s CI/CD pipeline in addition to its many test automation tools. The result is Test Data
Automation that is fully integrated with the Bank’s test automation environment.

Self Service Provisioning

Enterprise Scalability and User Management

Test Automation Integration

https://www.genrocket.com/self-service-test-data-provisioning/
https://genrocket.freshdesk.com/support/solutions/articles/19000035561-what-are-the-genrocket-realtime-engines-
https://www.genrocket.com/genrocket-multi-user-server-gmus/

