
GenRocket is taking a leadership role in the evolution of traditional Test Data Management. We
built the industry’s most comprehensive Test Data Generation platform and have extended it to
become an Enterprise Test Data Automation platform.

Test Data Automation requires 3 essential ingredients that GenRocket now offers: Precise control
over data quality, automated self-service provisioning and a fully scalable enterprise test data
platform.

GENROCKET ENTERPRISE
TEST DATA AUTOMATION
December 2019

HIGH QUALITY DATA

• Accurate Test Data Generation
• Blended / Queried Prod Data
• Combinations & Permutations
• Assured Referential Integrity
• 100% Data Privacy & Security

• Zero Touch On-Demand Delivery
• High Volume & High Performance
• Dynamic API-Driven Test Data
• CI/CD & Testing Tool Integration
• Adaptable to Any Test Data Need

• Fast, Powerful Self-Service
• Test Data Cases & Rules
• Presets & Wizards
• Intelligent Automations
• Cloud Collaboration /
 On Prem Data

SELF-SERVICE PROVISIONING SCALABLE PLATFORM

Problem: Manual Test Data Creation

The World Quality Report found that 69% of companies are still
creating data manually, principally with spreadsheets, in order to
provision the data needed for testing. Manual test data creation is
both time-consuming and cumbersome, but necessary if testing
requirements call for data value combinations and permutations that
are not readily available from other sources.

Problem: Production Data Mining and Masking

When the need for test data arises, many QA teams mine the
application production database for relevant subsets that can be
used for testing. The challenge is the random nature of the data
they extract. It’s not controlled data and usually requires manual
modification by testers to be useful. Additionally, sensitive customer
information must be carefully masked to secure the data and
conform to relevant privacy laws.

Test Data Automation is a comprehensive solution that eliminates industry-wide problems that
compromise testing efficiency and effectiveness and each one is describe below.

Solution: Test Data Automation can dramatically accelerate the manual data creation
process by 1,000% or more by defining and generating any volume of test data with total
control over the required data variations (patterns, combinations, and permutations) and
the desired output format.

Solution: With Test Data Automation testers can generate the precise data they need
for any type of positive, negative, edge case or combinatorial testing with real-time
synthetic test data that is generated at 10,000 rows per second and is 100% secure.

Problem: Test Data for End-to-End Testing

One of the most demanding QA challenges is testing a business
process across multiple applications and their APIs with end-to-end
integration testing. This places a special demand on test data for
validating workflows that process information and make decisions
based the results. Test data must be dynamic in order to validate
different outcomes for a variety of input values.

Data accuracy is critical if the test involves the use of real transaction
or account codes to test different paths of the workflow. End-to-end
integration testing may also involve multiple data structures and
formats to ensure compatibility between diverse systems.

Problem: Simulating Complex Data Feeds

Data feeds are batch or real-time streams of data that represent an
exchange of electronic information like credit transactions, money
transfers, insurance claims or supply chain orders and fulfillment.
They are often transmitted and processed in high volume with an
expectation of total accuracy and precision. Testing applications that
process complex data feeds can be very demanding.

Solution: GenRocket’s Test Data Automation solves complex end-to-end testing
challenges with its ability to define test data based on business rules and combine
synthetic data with production data that is queried during the testing process and
injected into an automated test procedure.

Solution: The GenRocket Enterprise Test Data Automation solution is designed for
provisioning test data for any complex data feed in industries like healthcare, financial
services, eCommerce, and supply chain logistics. Same day provisioning of high-volume
data feeds (in the millions of rows) is an easy and automated process with self-service
modules and a wizard-based user interface.

Problem: TDM System Cost and Complexity

In addition to manual data creation and the mining and masking
of production data, another data provisioning alternative is the
use of a traditional Test Data Management platform. The option
is often considered, but infrequently implemented because of its
high cost and complexity. TDM systems pull, copy, mask and refresh
production data. This is a slow, complex process and has come to
represent a bottleneck for testing.

The preferred model is distributed self-service where testers
can provision their own test data when they need it. As the
next generation of Test Data Management, Enterprise Test Data
Automation combines the use of Real-Time Synthetic Test Data with
queried production data to maximize speed and data quality with a
solution that offers simplicity at a much lower cost.

Solution: With its self-service modules and a wizard-based user interface, GenRocket’s
Test Data Automation solution radically improves the simplicity and efficiency of test
data provisioning. Adaptable methods for integrating GenRocket with test automation
tools and frameworks complete the picture and maximize the return on investment in
test automation technology.

TEST DATA AUTOMATION DEPLOYMENT
STRATEGY

GenRocket’s deployment strategy for Enterprise Test Data Automation follows Agile best practices
and uses the Software Testing Pyramid, a useful model to visualize the relationship between
various test categories and their implications for automated test execution.

The model for provisioning test data is evolving from traditional Test Data Management (TDM)
to real-time and highly integrated Test Data Automation. The traditional TDM model is based
on copying production data, mining that data for appropriate test data sets, masking sensitive
information that must remain private, subsetting, refreshing and versioning the data for test cases
and working through a centralized data provisioning process to accomplish all of the above. The
traditional TDM approach is too cumbersome for an Agile environment.

Follow the Test Data Provisioning Evolution

Toward the bottom of the pyramid are tests
performed on more isolated units of code which
are executed more frequently and take less time
to complete. Toward the top of the pyramid are
tests performed on more integrated sections of
code which are performed less frequently and take
longer to complete. The three tiers represent Unit
Testing, Service Testing, and User Interface (UI) or
end-to-end testing.

Our Test Data Automation Deployment Strategy
starts at the lowest level of Unit Testing and

Test Data Management Test Data Automation

Test Data Management
Test Data
Evolution

• Copy production database
• Mask sensitive information
• Subset volumes of test data
• Centralized provisioning model

• Define test data requirement
• Generate synthetic data
• Query production data
• Distributed self-service model

Test Data Automation

progresses through the higher levels of Service Testing and UI Testing. The test data challenge is
different for each stage and the implementation of GenRocket’s Test Data Automation solution
adapts to meet the various demands of Agile testing.

https://www.agilecoachjournal.com/2014-01-28/the-agile-testing-pyramid

The TDM model is evolving to a new and highly efficient model where controlled and accurate test
data is provisioned instantly and on-demand in a distributed self-service environment. With Test
Data Automation, the process is streamlined into a 3-step process: Import the data model, create a
Test Data Scenario matching the needs of each test case and generate test data in real-time during
test operations.

Real-Time Synthetic Test Data Generation is designed for the accelerated pace of Agile testing and
maximizes the benefits of continuous integration and testing. GenRocket can be used for any level
of testing from basic unit testing, to more complex API testing, to the sophisticated requirements
of end-to-end integration testing.

The GenRocket platform seamlessly integrates with test automation tools. It provides an intuitive
self-service layer for defining any volume or variety of test data and a powerful API that injects
data into the testing process at any stage of a complex workflow.

Real-Time Synthetic Test Data Generation

AUTOMATED
TEST

CASES
Test
Data
Scenario

Test
Data

Test
Data

Test
Data

Test
Data
Scenario

Test
Data
Scenario

Unit Testing at the Agile Task Level

Unit Testing With GenRocket Test Data Automation

Unit testing is performed at the Agile Task Level on the
smallest unit of code. These isolated tests are often
performed by a developer for testing a single function
and data domain. Unit testing is sometimes described as
in memory testing because it is isolated from the external
environment and involves no database access.

Unit tests represent the highest volume of test operations
and requires lowest volume of data, making it an excellent
candidate for test automation. However, test data must be
carefully controlled to meet the needs of each test case
and generated in real-time to support the accelerated
pace of continuous integration and testing.

The component-based architecture of the GenRocket Test Data Automation platform is an ideal
technology for defining and provisioning test data for high volume, automated unit testing. Simply
define the required data using a Test Data Scenario and generate it during test execution in any
format required (JSON, XML, CSV, etc.).

Here is a summary of the steps for unit testing in an Agile environment with GenRocket:

• Define Test Data Scenarios for each task-level test

• Generate single-domain test data in the desired format

• Invoke Test Data Scenarios from a test script via socket interface

• Execute unit tests with automated test tools and the GenRocket platform

Below is a component diagram to illustrate the elements used for this automated testing approach.
Unit tests use a Socket Helper to call the GenRocket Engine using its GSocket interface. The
GenRocket engine loads the appropriate Test Data Scenario and generates predefined test data
in the required format (JSON in this case) in less than 100 milliseconds. The GSocket interface
then retrieves the data and returns it via the Socket Helper for use during the test procedure. The
components of the test script are color-coded in green while the GenRocket components are
color-coded in blue.

https://www.genrocket.com/component-based-architecture/

Unit Testing Sequence Diagram

After the test is complete, the test data is purged. The Test Data Scenario is stored for future use
by this, or any other test, and ready to generate a fresh copy of pre-defined test data.

The sequence diagram below illustrates the process as that takes place during test execution.

Unit Testing Component Diagram

SERVICE LEVEL TESTING AT THE AGILE
STORY LEVEL

Service level testing is the next level of complexity represented by the software pyramid. Service
level tests focus on the interaction of Agile Tasks via one or more APIs in a module of code that
represents an Agile User Story.

Service level testing, also called API testing, usually
involves database access and one or more data domains.
When using multiple domains, it’s critical to maintain
referential integrity between key fields in the data tables
involved in testing.

Service level tests can involve any category of testing
including functional, integration, performance, security or
regression testing. In an Agile environment, service level
tests are usually automated and run through the release
pipeline.

GenRocket is a perfect match for meeting the test data challenges of Service/API testing. Test
Data Scenarios can be defined to generate any variety of test data in any volume to meet the
needs of any category of testing. With 232 Test Data Generators, GenRocket TDG can simulate
any combination of data values and its 52 Test Data Receivers can format data in any output
format. This provides testers with total control over the data they need for service/API testing with
comprehensive test data that maintains referential integrity and data privacy.

Here is a summary of the steps for using GenRocket when performing service level testing in an
Agile environment:

• Define Test Data Scenarios for each story-level test

• Maintain referential integrity between key fields in data domains

• Invoke Test Data Scenarios from a service level test script via socket interface

• Execute service level tests using automated test tools and the GenRocket platform

Below is a component diagram to illustrate the various elements used for automated service/
API testing. During test operation, GenRocket Test Data Scenarios are run to insert data into a
given table via JDBC with referential integrity. A Socket Helper in the test script calls each Test
Data Scenario via the GSocket interface and launches the GenRocket Engine to run the scenario,
generate the data, and insert the data into database table(s).

Service Level Testing with GenRocket Test Data Automation

The sequence diagram below illustrates the process that takes place during service-level test
execution.

After the test is complete, all test data is purged. Test Data Scenarios are then stored for future use
by this, or any other test, and ready to generate a fresh copy of the test data when needed.

Service Level Testing Sequence Diagram

Service Level Testing with GenRocket Test Data Automation

UI TESTING AT THE AGILE FEATURE LEVEL

The highest and most complex level of the Agile software testing pyramid is Feature-level testing
at the User Interface, or UI layer. Feature-level tests are complex end-to-end test procedures for
large blocks of code designed to execute a business solution from a user’s perspective.

End-to-end testing typically involves complex workflows
that require comprehensive test data that is controlled (for
data combinations and permutations), rules-based (for
testing business logic), private (no personally identifiable
information), accurate and realistic (real production data
blended with synthetically controlled data). As in the
service layer, a variety of testing categories may also be
involved in UI testing, including functional, integration,
performance, security, and regression testing.

GenRocket is especially powerful for end-to-end testing. Its component architecture allows any
combination of data tables and complex data feeds to be modeled, defined and generated on-
demand and during test execution.

GenRocket’s self-service layer, called GSelf-Service allows any tester to define, create and manage
comprehensive, enterprise-class test data that is seamlessly integrated with test automation
tools. GenRocket’s ability to replace sensitive customer data with realistic synthetic data ensures
data privacy. Its ability to query a production database and retrieve accurate data values that are
blended with controlled synthetic data maximizes test case effectiveness.

UI Testing With GenRocket Test Data Automation

Here is a summary of the steps for using GenRocket for UI testing in an Agile environment:

• Define Test Data Scenarios for each feature-level test

• Test complex workflows with blended synthetic and production data

• Invoke Scenarios in multiple ways: Bulk loading, Restful web services, and GSocket

• Execute UI level tests using automated test tools and the GenRocket platform

https://www.genrocket.com/self-service-test-data-provisioning/

End-to-End Testing with GenRocket Test Data Automation

Here is an example of end-to-end testing with GenRocket. Imagine testing the workflow in a
healthcare insurance claims processing application. Test data for a submitted claim must contain
synthetic data in place of personally identifiable information for patients and providers.

However, the codes used to represent diagnostic and treatment procedures, called CPT codes,
must be based on production data to be clinically accurate. CPT codes are the basis for returning
a correct determination for approval or denial of benefits based on the patient’s insurance plan.
In order to test the claim processing business logic, the tester must blend synthetic test data to
replace sensitive information with production data to ensure accuracy. See the workflow testing
diagram below.

Workflow Testing With GenRocket TDG

AUTOMATED
TEST

CASES
Test
Data
Scenario

Test
Data

Test
Data

Test
Data

Test
Data
Scenario

Test
Data
Scenario

Claim Request
Submission
Inject valid 837
test data for:
• Patient
• Provider
• Insurance Plan
• CPT Codes

Approval / Denial Workflow
Inject test data for business logic:
• If CPT = 123,
 • and Provider = ABC
 • and Insurance Plan = XYZ
• Then Approve, else Deny

1

Payment /
Remittance Advice
Inject valid 835
test data
• Provider
• Insurance Claim #
• Payment Amount
• Transaction #

3

2

REQUEST A DEMO

MAXIMIZE THE BENEFITS OF CONTINUOUS
INTEGRATION AND TESTING

The Agile test strategy outlined in this article will streamline the Agile testing process as it
improves the effectiveness of test cases used to prevent bugs during the development process.

Greater ROI: QA teams realize the full benefit of their investment in test automation tools with a
TDG platform that provides real-time, enterprise-class test data on-demand

Higher Quality: More control over the volume and variety of test data used for testing allows QA
teams to achieve greater code coverage and drive higher software quality

Improved Efficiency: A distributed self-service model for provisioning test data eliminates the wait
states and enables true continuous integration and testing in an Agile environment

If you would like to learn more about implementing a Test Data Transformation Strategy for your
QA organization, contact us to request a live demonstration of GenRocket Test Data Automation.

https://www.genrocket.com/demo-request/

