
ACHIEVING
TEST AUTOMATION SYNERGY
CI/CD PIPELINES + TEST AUTOMATION + TEST DATA GENERATION

How Test Data Generation integrates with CI/CD pipelines and 
test automation tools to unlock the full potential of accelerated 
software development.



TABLE OF CONTENTS

Embracing Quality at Speed    3

Thinking Differently About Test Data 10

The Importance of Test Data Quality  16

Integrating TDG with CI/CD 21

Maximizing Test Automation ROI 28

Innovating Test Data Solutions 36

Realizing Operational Benefits  45



ACHIEVING
TEST AUTOMATION SYNERGY

CI/CD PIPELINES + TEST AUTOMATION + 
TEST DATA GENERATION

EMBRACING QUALITY AT SPEED   

Software engineering teams are accelerating the speed of development 
through the adoption of Agile and DevOps methodologies combined with 
the deployment of CI/CD pipelines. This trend has made test automation 
essential for QA organizations to keep pace with development.

SPEED OF DEVELOPMENT

DevOps
CI/CD
Agile

CI/CD
Pipelines

Automation
Frameworks

Test Data
Generation

TE
ST

 D
AT

A

TE
ST

 A
UT

O
M

A
TI

O
N

RE
LE

ASE
 C

YC
LE

S

This eBook will introduce Test Data Generation (TDG) as the next 
generation of Test Data Management (TDM) and will illustrate how this 
new and innovative technology can help your organization achieve the full 
synergy of test automation in a continuous delivery environment.

1

Faster release cycles are driving automation in every testing 
category. Test automation has become the key to ensuring 
quality at the speed of continuous delivery.



In similar fashion, CI/CD pipeline tools have become the go-to technology for 
managing faster release frequencies and Jenkins leads the way with 70% market 
share of all CI/CD server installations (Datanyze).

Almost half of all development organizations are now aspiring to achieve daily or 
hourly release frequencies (49% according to Statista), while the number who are 
still planning to release less often than once per week has dropped from 44% to 
just 28%. The use of CI/CD pipelines with test automation is essential for meeting 
these accelerated release frequency goals.

Release Cycles Keep Getting Faster

For most development environments, DevOps has become a standard approach for 
compressing release cycles from months and weeks to just days and hours. Market 
data now characterizes DevOps as widely adopted, with over 50% of organizations 
having implemented it and over half of the remaining organizations planning to 
implement the approach within 12 months (Forrester).

https://www.datanyze.com/market-share/ci
https://www.statista.com/statistics/673403/worldwide-software-development-survey-deployment-frequency/
https://www.forbes.com/sites/forbestechcouncil/2017/12/08/10-top-devops-barriers-and-trends-forecasted-for-2018/#5040347c4ee7


Test Automation to the Rescue

Test automation enables exponentially faster testing than manual methods at a 
lower cost. It enhances the ability to perform unit, functional, regression, integration 
and performance testing at higher velocity and frequency while offering greater 
control over the consistency of testing, the coverage of code and the quality of 
software released to production.

The global market for test automation is expected to grow at a rapid pace, more 
than tripling in size between 2015 and 2022 as it grows annually at 23% to reach 
almost $55 billion during the forecast period (Zion Market Research).

This heightened demand for test automation solutions has led to a wide assortment 
of test tools and test automation frameworks to orchestrate them.  Chief among 
these testing frameworks is Selenium, a suite of open source software testing tools 
used by leading software-driven companies like Netflix, Google, HubSpot, and 
Fitbit.  According to iDatalabs, Selenium is in production at more than 29 thousand 
companies, holds a 27% market share, and maintains a commanding lead over the 
rest of the pack in the test tools arena.

Test automation tools are essential enabling 
technologies for implementing continuous integration 
and testing for successful CI/CD pipelines.

https://www.zionmarketresearch.com/news/test-automation-market
https://idatalabs.com/tech/products/selenium


At first glance, it would appear test automation has already reached wide-scale 
adoption. However, a second and more revealing question posed to the same group 
of respondents found that only 23% of organizations had automated more than 
50% of their test cases and only 4% had automated over 90% of their test cases. 
Apparently, adoption of test automation is one thing, while full-scale deployment is 
quite another matter.

The most recent edition of the World Quality Report breaks down the penetration 
of test automation into various test categories. In a comparison of automation 
levels between 2018 and 2017, the report shows that no testing category had a 
proportion of their test cases automated to a level greater than 18% with very little 
advancement from 2017 levels to 2018 levels.

Test Automation Brings New Challenges

Intense market interest and aggressive growth projections would seem to imply 
that test automation is something of a miracle cure for meeting the demand for 
continuous testing and integration solutions. A survey of more than 1600 QA 
professionals in 60 countries conducted by QA Intelligence found that 85 percent 
of organizations have already implemented some form of test automation.

https://www.microfocus.com/media/analyst-paper/world_quality_report_analyst_report.pdf


Cleary, organizations are facing significant challenges 
with full deployment of their test automation tools.

Another survey of 732 software professionals conducted by Saucelabs in 2017 
found the majority of their efforts were still being applied to manual testing rather 
than automated testing.

http://info.saucelabs.com/rs/468-XBT-687/images/Sauce%20Labs%20-%20State%20of%20Testing%20Survey%20Results%20Jan,%202017.pdf


What challenges are preventing its full deployment and associated benefits in cost 
reduction, higher efficiency, increased coverage and improved quality?

The 2018 World Quality Report, examined this area as well. Their study found 61% 
of respondents have difficulty automating their QA and testing processes because 
applications change too much with each release, indicating they have trouble 
building an adaptable test automation solution. This can be viewed as a temporary 
problem as QA teams learn how to use and adapt their tools more effectively and 
efficiently over time. 

However, a second and more systemic problem was identified by the research. 
Almost half of the survey respondents (48%) reported challenges with predictable 
and reusable test data for their test environment, making it especially challenging 
to automate testing.

Why is automation failing to dominate the day-to-
day operational world of software testing?

To achieve continuous testing and integration, one 
needs access to continuous test data as well.

https://www.microfocus.com/media/analyst-paper/world_quality_report_analyst_report.pdf


As stated in the World Quality Report, “66% of our respondents said that they used 
spread sheets to manually generate new test data for multiple iterations of testing… 
another 62% of respondents said that they copied production data which they 
anonymized before testing… Clearly, the maturity of test data provisioning is not 
changing in enterprises.”

The lesson to be learned is obvious:  By itself, test automation is only half of the 
solution needed by testers to fully and successfully automate a majority of their 
test operations.  The other half of the solution is an automated approach for 
provisioning quality test data at the scale and pace required for continuous testing.

Test Data Generation can provide an automated 
approach that unlocks the full potential of test 
automation.

https://www.microfocus.com/media/analyst-paper/world_quality_report_analyst_report.pdf


There is increasing demand 
for high quality test data 
to be provisioned instantly 
and on-demand to enable 
continuous testing and 
integration. This puts 
tremendous pressure on 
the traditional TDM model 
of copying, subsetting and 
masking production data. It 
takes too long and requires 
too much effort.

THINKING DIFFERENTLY ABOUT TEST DATA2

Until now, the only TDM alternative has been to manually create rows of test data in 
Excel, limiting the volume and variety of data for use by test automation tools.

TDG technology allows test data 
to be generated instantly, with 
predefined attributes and based on 
the organization’s data model. With 
TDG, test data can be controlled, 
conditioned and generated in a 
consistent manner whenever it’s 
needed. And unlike production data, 
TDG produces synthetic data that 
is completely secure, removing the 
necessity for data masking. Test data 
provisioning is becoming easier and 
more automated as the traditional 
TDM model evolves into a TDG model.

TDG removes the time delay associated with the use 
of production data and the limitations on volume and 
variety associated with manually created data.

CI/CD
Pipelines

Test
Automation

Test Data 
Generation



When CI/CD pipelines are combined with test 
automation tools and TDG technology, the full synergy 
of test automation is achieved.

GenRocket is a technology leader and thought-leader in this space. The GenRocket 
TDGTM platform is seamlessly integrated with Jenkins CI/CD pipelines and 
Selenium test automation tools enabling the combined automation of software 
testing and test data generation. 

Together, these complementary technologies help organizations realize the full 
potential of automation with fully integrated platforms that accelerate software 
testing to keep pace with the shorter release cycles of software development.

By its nature, a data 
subset is a sample 
of application 
inputs taken from a 
production database. 
There is little control 
over the nature of 
the data and testers 
may have to manually 
review the data to 
assess its value to 
the test case. While 
it provides a realistic 
representation of 
application data, 

Production Data Subsetting – No Longer Required

it does not represent all of the potential edge cases or provide a vehicle for 
negative testing. It is what it is - realistic, but uncontrolled test data that must be 
masked to remove sensitive information prior to its use for testing code.

Why not generate real-time synthetic test data in any pattern imaginable to 
provide greater coverage of all data permutations and fully exercise your code 
under all possible scenarios. It’s faster, easier, and more secure than subsetting 
production data and eliminates the requirement for data masking.



Additionally, test data can become “stale” over time. Data structures can change 
for user accounts, business transactions, product inventory, or other data elements. 
Test data must be refreshed to reflect these changes.

Test Data Refresh – No Longer Required

The principle of test isolation refers to the independence of each test from every 
other test. However, what often takes place particularly in the context of testing 
web-based transactions, is the test data is changed in some way by the application 
during the testing of a stateful workflow. This invalidates the use of this data for 
regression testing by other related test cases. The test data can no longer be used 
consistently across independently run tests.

Imagine a functional test for credit card transactions that calculates reward points 
based on the account balance of the card holder. The test case must simulate credit 
transactions, change account balances and compute reward points dynamically.  
During test execution, test data is altered by the calculations being tested and must 
be refreshed for subsequent testing.

View a video showing a TDG solution for dynamic test data.

Data refresh is not a concern when using GenRocket’s TDG platform. For each test 
case that is run, a fresh copy of real-time synthetic test data is generated
on-demand for that test. Test data sourced via GenRocket TDG appears 
dynamically when it’s needed by the test case and disappears when the test 
operation is complete. The next time the test is run, the data reappears in the exact 
state required.

Ms. Tereasa F. Saldana 001-01-0001

Mr. Everette Q. Groom II 001-01-0002

Mr. Jules U. Hackney Jr. 001-01-0003

Mrs. Kristina J. Brick 001-01-0004

Mr. Francisco M. Grimes II 001-01-0005

Dr. Iona D. Starrett 001-01-0006

Ms. Patricia O. Ingraham III 001-01-0007

Ms. Tracee M. Farah 001-01-0008

Mr. Alva I. Ziegler Jr. 001-01-0009

Dr. Mike T. Youngblood II 001-01-0010

Ms. Tereasa F. Saldana 001-01-0001

Mr. Everette Q. Groom II 001-01-0002

Mr. Jules U. Hackney Jr. 001-01-0003

Mrs. Kristina J. Brick 001-01-0004

Mr. Francisco M. Grimes II 001-01-0005

Dr. Iona D. Starrett 001-01-0006

Ms. Patricia O. Ingraham III 001-01-0007

Ms. Tracee M. Farah 001-01-0008

Mr. Alva I. Ziegler Jr. 001-01-0009

Dr. Mike T. Youngblood II 001-01-0010

Appears Disappears Reappears



Secure Test Data - No more PII

Many organizations are mandating the 
elimination of Personally Identifiable Information 
(PII) from testing to avoid the risk of a data 
breach and a potentially enormous cost in 
terms of liability, lost revenue and the penalties 
for non-compliance with privacy regulations. 
Organizations in retail, healthcare, banking and 
insurance are especially vulnerable to these data 
privacy risk factors.

Whenever a GenRocket test data scenario is invoked 
by an automated test script, a fresh copy of test 
data, in its original state, is generated for that test. 
Any changes to the data model will be automatically 
incorporated and the TDG engine will generate new 
test data exactly matching the revised model.

By its nature, synthetic test data does not contain PII. All user account data, credit 
information, transaction values, bank balances, healthcare records or other forms 
of sensitive information are artificially generated by the TDG engine.  From a data 
security perspective, testing with data generated by GenRocket TDG is risk-free.



Centralized Provisioning – No Longer Required

GenRocket TDG changes the way test data is provisioned from a centralized 
service model to a distributed self-service model. With traditional TDM, once test 
data requirements have been defined, a production data subset is requested. 
Once obtained, sensitive data must be masked and additional data may be added 
manually to increase the volume and variety of data patterns. Production test data 
must be refreshed on a regular basis to ensure consistency and accuracy.

With GenRocket TDG, the process is simplified. Test data scenarios are written 
to specify the volume and variety of data needed to maximize coverage. As tests 
execute, synthetic test data is generated in real-time by test scripts that call for 
test data using APIs.  Any tester can use or modify an existing test data scenario to 
jumpstart the provisioning process.

Traditional TDM GenRocket TDG

Centralized Provisioning Self-Service Provisioning

Test data requirements defined Test data scenario created

Data requested from production Tester runs test

Production copies data subset Test data is generated

TDM operator masks data

Data is added to increase coverage

Tester runs test

TDM operator refreshes data



Quality at the Speed of Development

In real-world software testing environments, GenRocket TDG has been shown to 
accelerate the test data provisioning process by more than 1000%. The time to 
source the data is greatly reduced and the time to generate quality and controlled 
test data at scale occurs on-demand and in real-time at over 10,000 rows per 
second.  Here are some benchmarking examples of test data acceleration taken 
from actual QA departments at GenRocket customers in various industries.

DOMAIN SCENARIO VOLUME OF 
DATA

# OF 
ELEMENTS / 
COLUMNS

TIME TAKEN 
WITH 

TRADITIONAL 
APPROACH

TIME TAKEN
WITH

GENROCKET

Finance Real-time synthetic
data replacement 50,000

2 databases
15 tables
110 columns

~ 16 hours ~ 20 minutes

Retail

Data generation 
for functional and 
performance testing 
of e-commerce

1,000,000
2 databases
30 tables
200 columns

~ 30 hours ~ 15 minutes

Health 
Care

Data generation
for integration
testing

500,000
2 databases
28 tables
105 columns

~ 24 hours ~ 10 minutes

TDM is evolving to TDG to simplify and accelerate the process while manual test 
data creation is giving way to a greater use of automation.

Test Data Generation is quickly becoming an 
accepted approach for keeping pace with the speed 
of software development in the age of DevOps and 
continuous delivery.



At GenRocket, we believe the quality of the testing process is only as good as the 
quality of the test data being used for those tests. When generating test data for 
your test automation framework, it’s just as important to generate data with a very 
high standard of quality as it is to provision it rapidly. The diagram below illustrates 
the four dimensions of test data quality delivered by GenRocket’s Test Data 
Generation platform:

THE IMPORTANCE OF TEST DATA QUALITY 3



PATTERNED TEST DATA

CONDITIONED TEST DATA

The GenRocket Test Data Generation platform provides hundreds of test data 
generators that can be combined to create test datasets with any pattern of data 
you can imagine. Patterned test data can methodically reproduce a sequence 
of data variations for a given input field or set of fields making it very useful for 
integration testing and load testing.

Here are some typical examples:
• An ordered list of user account names with a mix of alpha-numeric characters
• A realistic list of names and addresses for multiple countries and languages
• A sequential list of formatted social security numbers for any range of values

Simply create and run a Test Data Scenario, which is a small instruction set used by 
the GenRocket engine to generate the desired test data in real-time. 

Perhaps your test data needs to represent a specific set of conditions to find 
anomalies associated with boundary conditions. Or your test case may be designed 
for negative testing to detect errors associated with invalid or missing data. TDG 
allows comprehensive testing by providing conditioned test data to cover a wide 
variety of use cases.

Here are some typical examples:
• Randomized test data to detect unexpected outcomes from the code
• Edge case data to fully exercise the code for all boundary conditions
• Null test data to test an application’s response to missing data inputs

GenRocket’s TDG platform allows testers to define their own test data requirements 
and generate conditioned test data in real-time and on-demand.



The best way to maximize code coverage is to maximize the completeness of the 
test data. With GenRocket TDG, testers can generate many more variations of test 
data than can possibly be found in a production data subset. Permutation testing, 
for example, is useful for finding false positives in applications with an extensive use 
of calculations that produce statistical results.

Financial service applications that handle a high-volume of transactions must be 
rigorously tested with a large-scale transaction history containing past or future 
dates. They also require the ability to blend synthetic data with program data to 
accurately test transaction outcomes.

Another example is a machine learning algorithm that must be trained and 
validated using a large test dataset that represents real-world information with a 
variety of values in structured or unstructured formats.

GenRocket TDG allows full control over generating:

• All variations and permutations of data

• Conditions, percentages, edge cases and null data

• All variations of historical and future data

• Multiple formats for data interface testing

• High volume data for load and performance testing

COMPLETE TEST DATA



Accuracy is a measure of the precision of the data, the validity for how faithfully 
it represents the database and the timeliness for how often the data is refreshed 
and updated. GenRocket TDG generates test data based on the data model for 
the target application database. When the data model changes, GenRocket TDG 
automatically updates its test data scenarios to represent the most current version 
of the data model.

GenRocket TDG also maintains referential integrity for all parent-child-sibling 
relationships among data tables throughout the TDG process. The more complex 
the application and its database structure, the more value QA professionals will 
realize from GenRocket’s ability to ensure referential integrity.

• GenRocket’s TDG engine generates test data based on your data model

• All test data is refreshed based on the most current version of the data model

• Parent-child-sibling relationships are always maintained

ACCURATE TEST DATA

The Importance of Referential Integrity

Referential Integrity is a term used to describe the relationship between tables in a 
database and the importance of preserving the links between primary and foreign 
key fields that connect them together in a logical arrangement. A primary key is a 
field in a parent data table that links to a foreign key in a child or sibling data table.

For example, if the relationship between a customer account entry (parent) and 
related entries in a sales order table (child) and a customer service table (sibling) 
are not maintained, then changing or deleting one row can result in orphaned rows 
of data in other tables.

In a production environment, loss of referential integrity between data tables 
can result in orders not being fulfilled, erroneous charges on customer billing 
statements or sales returns not being processed.



To be effective, software testing must use test data that preserves referential 
integrity between parent-child-sibling data table relationships to validate code 
that processes database transactions. Otherwise, defects will be missed, or false 
positives will be flagged during the testing process.

GenRocket TDG holds the only patent for maintaining referential integrity while 
generating real-time synthetic test data. It is a critically important element of 
data quality that enables QA teams to perform rigorous testing to maximize the 
efficiency of defect identification and as a result, the quality of software released to 
production. In the next chapter, we discuss ways you can make use of this new level 
of test data quality by automating the generation of test data within your CI/CD 
pipeline server and test automation framework. 

account_num first_name last_name

10011 Frank Johnson

10012 Jack Olsen

10013 Mary Smith

account_num ticket-num date

10013 44415 03-15-2019

10077 44416 03-15-2019

10099 44417 03-15-2019

order_num product-sku account_num

190315 sweater-101-s 10013

190316 socks-103-M 10025

190317 slacks-105-L 10064

CUSTOMER ACCOUNT TABLE

CUSTOMER SERVICE TABLE

SALES ORDER TABLE



As previously stated, when CI/CD pipelines are combined with test automation 
tools and TDG technology, the full value of test automation is achieved. Technology 
integration is the key to realizing “Test Automation Synergy”. In this chapter, we 
describe how GenRocket TDG can be easily integrated with CI/CD pipeline servers 
like Jenkins and test automation frameworks like Selenium.

Let’s start with a high-level overview of the GenRocket platform to understand its 
modular architecture, its flexible capabilities and how it interfaces with automation 
tools and technologies like Jenkins and Selenium. As illustrated below, the 
GenRocket TDG engine supports virtually any testing requirement where quality 
test data is needed.

The top layer in the diagram represents use cases for various categories of 
testing. Test cases for performing these operations can request test data from the 
GenRocket TDG engine in a number of ways including database queries using Java 
database connectivity, test scripts written for XLS, CSV, XML or JSON files, API calls 
for REST or SOAP services, or a custom format for an industry-specific application.

INTEGRATING TDG WITH CI/CD4

Database
Loading

USES USES USESUSESUSESUSES

SCENARIO SCENARIO SCENARIO SCENARIO

Unit
Testing

Functional
Testing

REST SOAP

CUSTOM
FORMAT

Integration
Testing

Load
Testing

Jenkins CI-CD
Pipeline

Commercial
Testing
Tool

Custom
Testing
Tool

Selenium



GenRocket Scenarios contain the test data specifications required for a given test 
case. They define the data structure (e.g., data table fields and their relationships), 
the attributes of the data (e.g., first name, last name, social security number, etc.), 
instructions for controlling the volume and variety of data (e.g., a pattern of 1,000 
records in sequential order by user ID), and the output data format required (e.g., 
XML, JSON, CSV, SQL, JDBC, REST, Webservice, etc.).

GenRocket TDG can interface to a wide variety of testing tools and frameworks to 
fully automate the process of generating test data in real-time and on-demand for 
virtually any testing operation or application environment. 

A Fully Integrated Test Automation Environment

If you are already using Jenkins and Selenium, or a similar test automation 
framework, building a fully automated test automation environment that includes 
TDG is easy and straightforward. A simple process flow for using GenRocket TDG in 
conjunction with the Jenkins CI/CD pipeline is illustrated by the diagram below.

Here’s how it works: (1) The Jenkins pipeline starts, (2) and calls the GenRocket 
engine, (3) which in turn executes a pre-defined test data scenario that (4) 
generates controlled test data according to an exact specification in real-time so 
that (5) the test case can immediately consume and process the data at runtime. 

An architectural model for this process flow illustrates how each component of the 
test automation framework can be seamlessly connected to provide a “zero touch” 
model for continuous testing in a DevOps environment. In the block diagram below, 
the CI/CD pipeline server with its test automation framework are both represented 
on the left and the GenRocket TDG platform for on-demand test data provisioning 
is on the right.

For each test case, a GenRocket Test Data Scenario is 
used to control the operation of the TDG engine.

1. Jenkins 
Pipeline starts

2. Calls GenRocket 
Engine

3. Engine runs 
Scenario

4. Generates 
Data

5. Test consumes 
Data



The methodology for using these platforms as an integrated environment for 
continuous testing can be summarized by these 4 simple stages: 

1. Automate Testing:
Define the test cases and test data requirements for the application in order 
to perform functional testing, regression testing, performance testing, etc.

2 Integrate Platforms:
A batch file or shell script can invoke a test data scenario in the GenRocket 
TDG engine or an API can call for test data via scripting or compiled 
language.

3. Generate Test Data:
GenRocket TDG will generate test data as the test executes using pre-
determined test data specifications and in the output format required.

4. Validate Code:
Your application can now be continuously tested with simple functional 
testing or comprehensive integration testing to identify and remedy defects 
before they reach production.

Together, these tools and technologies comprise a fully integrated environment 
that enables full scale deployment of test automation across the QA organization, 
throughout the continuous delivery development cycle.

Test Data Generation Platform

Test Automation Platform

Application Under Test

executes launches

Scripting or
Compiled Language

Test Automation
Platform

Real-Time Synthetic Test Data:
Generated in real-time when it’s
needed and can be discarded when
testing is done.

Test
Data

Test
Data

Test
Data

Test Data

Batch File or
Shell Script

Test
<<component>>

Automation
Server

(e.g. Jenkins)
<<component>>

Test1

<<component>>
GenRocket

Engine

<<component>>
Scenario

<<component>>
Scenario

<<component>>
Scenario

<<component>>
GenRocket

Engine

<<component>>
GenRocket

Engine

<<component>>
Test2

<<component>>
Test3

<<component>>
Automation

Script
(e.g. Selenium)

AUTOMATE1

VALIDATE CODE4

INTEGRATE2 GENERATE3

FULLY INTEGRATED TEST AUTOMATION ENVIRONMENT



GenRocket TDG Deployment Models

The adoption and deployment of any new technology can take time and no single 
approach will work for every organization. However, at GenRocket we have seen 
two models for deployment used by our customers. Both have proven to be 
effective for accelerating their testing processes while increasing the quality of test 
operations.

The Best Fit Deployment Model

“Best-Fit” deployment introduces 
TDG one test case at a time to realize 
the greatest impact on operational 
efficiency.  Applications are assessed to 
determine their test data requirements 
and the need for continuous testing 
to keep pace with development. After 
each test case is created and the test 
data specified, testing is automated 
using the integration framework 
described above.

Deployment starts with a Proof of 
Concept (POC) to introduce GenRocket 
technology into the organization and 
prove-in the use of GenRocket TDG for 
meeting test data requirements. A POC 
typically involves 1 to 3 use cases with 
appropriate test data scenarios to get 
experience with the technology.

After the first test case is automated for testing with TDG, additional test cases are 
assessed one-by-one using GenRocket’s guidelines for TDG deployment.

Guidelines for assessing best-fit use cases are documented in Test Data Generation 
Use Cases, a GenRocket publication that shares deployment experiences from our 
most effective TDG customer engagements.

The document provides a useful checklist for identifying the applications and test 
cases that will derive immediate benefit from TDG.

This approach provides your QA team with “quick wins” to demonstrate the value 
of GenRocket TDG and justify its continued deployment across the organization.

https://www.genrocket.com/wp-content/uploads/2019/03/GenRocket-Test-Data-Generation-Use-Cases-March-2019.pdf
https://www.genrocket.com/wp-content/uploads/2019/03/GenRocket-Test-Data-Generation-Use-Cases-March-2019.pdf


The Managed Deployment Model

Managed Deployment, a more structured approach for GenRocket TDG 
deployment, is based on proven best practices and assisted by a GenRocket 
Certified Partner. Like the Best Fit Deployment model, this model begins with a 
POC to prove-in TDG technology with 1 to 3 use cases that represent the most 
pressing QA challenges.

After successfully completing a POC, the GenRocket Partner will facilitate the 
TDG deployment process by following a Deployment Roadmap.

A deployment team will be established to audit the Application Environment, the 
Data Environment, and the Test Environment before building out the Deployment 
Plan.

Based on that plan, the deployment team will methodically roll-out the use of 
TDG technology for application testing in a staged approach. This approach 
minimizes disruption as the QA team gains proficiency with GenRocket TDG and 
ensures a successful roll-out.

Test Data Generation Deployment Checklist

TDG Guidelines Applications Test Operations Data Source

1. Fast Delivery Application Name Test Cases ☐ TDG

2. Data Privacy Application Name Test Cases ☐ TDG

3. Boundary Conditions Application Name Test Cases ☐ TDG

4. Blended Test Data Application Name Test Cases ☐ TDG

5. Volume Data Application Name Test Cases ☐ TDG

6. Data Refresh Application Name Test Cases ☐ TDG

7. Special Data Formats Application Name Test Cases ☐ TDG

8. New Applications Application Name Test Cases ☐ TDG

9. Dynamic Test Data Application Name Test Cases ☐ TDG

10. CI/CD Pipelines Application Name Test Cases ☐ TDG

Best-Fit TDG Deployment



A Managed TDG Deployment Roadmap includes analysis of the following:

• APPLICATION ENVIRONMENT
 A written audit of the target applications and infrastructure

• DATA ENVIRONMENT
The information flow and data dependencies between systems

• TESTING ENVIRONMENT
The test data tools that are in use and their integration requirements

• TDG DEPLOYMENT
Staged and prioritized deployment of the TDG provisioning 
processes

Managed TDG Deployment



The deployment team will be composed of the following roles and 
responsibilities:

Project Manager – Oversees and manages the TDG implementation project.

Data Architect – Understands the data model and the relationships between the 
applications and databases.

Solution Architect – Understands the test data requirements for testing 
applications and sets up a project in GenRocket’s TDG platform to meet those 
needs. 

Data Specialist / Testers – Uses prebuilt test data generation scenarios, or builds 
and modifies new scenarios, to generate test data for a variety of test cases.

The Managed Deployment process can be implemented across very large and 
sophisticated testing organizations in a matter of weeks. Operational efficiencies 
will be realized almost immediately as provisioning cycles are drastically reduced 
and overall testing velocity accelerates from use of automation.

In the next chapter, we will dig deeper into the many use cases for GenRocket TDG 
for all areas of software testing as we explore strategies that will maximize the ROI 
on your investment in test automation and TDG technologies.

TDG Deployment Roadmap

APPLICATION ENVIRONMENT
Understand the applications and infrastructure that supports them and underlying databases
Deliverable > Applications Audit: Identifies applications and infrastructure.

DATA ENVIRONMENT
Understand the information flow through the application environment and the data.
Deliverable > Data Audit: Identifies data flow and data dependencies.

TESTING ENVIRONMENT
The current testing resources, test processes, testing tools and data provisioning processes. 
Deliverable > Test Audit: Test data tool and framework integrations.

TDG DEPLOYMENT
The TDG deployment plan for the organization.
Deliverable > TDG Deployment Plan: Prioritized plan for application testing, revised processes 
for test data provisioning, data refresh and test data integration with tools and frameworks.



Test Data Generation (TDG) is the perfect companion technology for test 
automation. By their nature, test automation tools require that test data be 
provisioned at high velocity. With GenRocket TDG, provisioning speed is not a 
problem because test data can be generated instantly when the automated tests 
run.

With the help of TDG, realizing the full benefit of continuous testing can be a very 
achievable goal. However, transitioning from traditional test data provisioning to 
TDG can be perplexing. For many QA professionals, it’s something of a “where do I 
begin” dilemma. It’s a classic change management challenge to overcome.

Change is always difficult, and the inertia of current practices can be hard to 
break. One of the principles of successful change management is to identify quick 
wins that establish early success and reinforce the team’s commitment to a new 
direction. Quick wins combine achievable outcomes and measurable benefits with 
the use of best practices that can be used and expanded over time.

Selecting quick wins for GenRocket TDG deployment should be guided by your 
test automation deployment. Which tests you choose to automate first will have a 
profound effect on productivity gains. Because some categories of testing provide 
greater ROI than others in terms of time and cost savings, it’s best to identify areas 
of testing where automation and test data generation will have the greatest impact.

MAXIMIZING TEST AUTOMATION ROI5



Functional testing is an essential role performed by QA to verify the system or 
application fully meets the requirements of its functional specification.

Non-functional testing exercises the performance, reliability, scalability, 
compatibility, security, and other non-functional aspects of the software.

According to a survey of 2,291 QA professionals conducted by ToolsQA, functional 
and regression testing are the most common areas for the application of test 
automation.

https://dzone.com/articles/challenges-in-test-automation-survey-key-results


Functional testing can be performed at all layers of the software test pyramid - Unit 
Testing, Service Testing and User Interface Testing. Functional tests performed at 
the unit testing layer, often referred to as white box testing, are often performed 
by developers who examine source code internals to ensure they conform to the 
business logic the software is meant to execute.

Functional testing performed at the Service and UI layers is often referred to as 
black box testing and requires no knowledge of internal code structure or logic. 
The concept is to provide inputs to a “black box” and compare actual results with 
expected results. This kind of functional testing lends itself to the practice of Data 
Driven Testing, a testing approach where an external data source is used to feed 
the test case with a large number of data variations in a controlled fashion to fully 
exercise the code. This technique enables positive testing (based on likely, valid and 
complete input data) and negative testing (based on unlikely, invalid and missing 
input data).

The Software Test Pyramid provides a useful way to look at the operational nature 
of testing. Lower on the pyramid are tests performed at high volume on a smaller 
code base. Tests that are higher on the pyramid are performed at lower volume on 
a larger code base.



The middle of the software test pyramid represents a sweet spot for test 
automation tools integrated with test data generation. Service layer tests for 
functional, performance and regression testing all share four important attributes 
that maximize ROI. That’s because service layer tests represent tests that:

• Require a high-volume of test cases
• Involve tests that are highly repetitive 
• Require no knowledge of source code internals
• Are data-intensive and require controlled test data inputs

Therefore, the best types of tests to start deploying GenRocket TDG with 
automated testing are:

• Data-driven functional testing
• Functional tests repurposed for performance testing
• Functional and performance tests that rerun for regression testing

This approach provides the best path to quick wins because each functional test 
can be repurposed for other test categories with test data that is based on reusable 
test data scenarios.

Software tests that are performed manually, and on a 
repeated basis, should be automated first to save time, 
reduce project cost and apply Data Driven Testing 
principles to maximize coverage and quality.



An Example of Test Automation, TDG and Data-Driven Testing

Here is a simple example that illustrates the power of test automation, TDG and 
data driven testing. Let’s assume that we want to test a login system having 
multiple input fields with 1,000 different data sets.

To test this, you can take the following different approaches:

Approach 1) Create 1,000 scripts one for each dataset and run each test 
separately one by one.
Approach 2) Manually change the value in the test script and run it multiple 
times.
Approach 3) Import test data from an excel sheet, fetch data from excel rows 
one by one and execute the script.
Approach 4) Create a Test Data Scenario using GenRocket’s TDG platform 
to replace multiple test scripts and generate 1,000 iterations of patterned, 
conditioned, controlled test data (or any volume of data needed) at the rate of 
10,000 rows per second.

Clearly Approach 4 is the preferred method for test automation. An investment 
of 10 minutes to create a Test Data Scenario for the TDG platform translates to 
test execution time of just a few seconds with a test case that can be reused for 
performance testing and regression testing. Below is an example of the kind of test 
data that can be defined and generated by the GenRocket TDG. Notice the many 
variations that are possible and the controlled manner in which the test data can be 
used by test cases. 

Pattern Realistic Sequential Random Edge Case Null

firstName1 Ms. Tereasa F. Saldana 001-01-0001 749-40-0182 749-40-0182 749-40-0182

firstName2 Mr. Everette Q. Groom II 001-01-0002 797-59-7445 797-59-7445 null

firstName3 Mr. Jules U. Hackney Jr. 001-01-0003 135-93-8060 135-93-8060 135-93-8060

firstName4 Mrs. Kristina J. Brick 001-01-0004 214-82-8447 214*82*8447 null

firstName5 Mr. Francisco M. Grimes II 001-01-0005 170-60-5224 170-60-5224 null

firstName6 Dr. Iona D. Starrett 001-01-0006 302-76-0978 302-76-0978 null

firstName7 Ms. Patricia O. Ingraham III 001-01-0007 266-20-5659 266-20-5659 266-20-5659

firstName8 Ms. Tracee M. Farah 001-01-0008 005-57-7667 005#57#7667 005-57-7667

firstName9 Mr. Alva I. Ziegler Jr. 001-01-0009 490-48-8084 490-48-8084 null

firstName10 Dr. Mike T. Youngblood II 001-01-0010 471-29-7519 471-29-7519 null



Combined Functional, Performance and Regression Testing

One way to maximize the ROI of your test automation investment and get some 
quick wins during your transition to TDG is to combine multiple test operations 
into a single testing process. Start by automating your functional test cases and 
configure your test data scenarios to maximize coverage. Specify test data for 
both positive and negative testing purposes. Now include the assertions that 
validate code functionality and identify defects. Highly controlled test data helps 
to minimize false negatives (when good code fails an assertion test) and false 
positives (when bad code passes an assertion test). Both conditions contribute to a 
higher defect rate and can erode confidence in the QA process.

TDG ushers in a new approach to testing where the design of test data is integral to 
the design of the test case. Controlling the nature of the test data used by a given 
test case is critical for identifying defects, while maximizing test data volume and 
variation is critical for maximizing coverage.

As a separate test case, change your assertions to test the performance of the 
application by increasing its load conditions. With GenRocket TDG, the volume of 
your test data can be scaled up or down simply by changing the loop count for a 
given test data scenario. You can vary the load in a structured, methodical way to 
systematically assess the impact data volume on performance.

The sample test data in the table above represents just 10 rows of data. Think of the 
time savings and coverage improvement when 1,000 rows (or more) are generated 
in a matter of seconds. Now consider the ability to run load, stress, or performance 
tests with a million rows of data generated by a TDG platform in a matter of 
minutes.



Additionally, you can perform automated regression testing simply by rerunning 
the functional and performance tests for each new release. Regression testing 
must always be performed with consistent test data. With GenRocket TDG, test 
data is always fresh because it is newly generated for every test. And the identical 
data (even if it is random data) is generated every time.

The diagram below illustrates the concept of a consolidated test suite that 
performs functional testing and also performs performance testing by varying 
the application load with increasing data volume. These tests can be rerun for 
regression testing.



If your performance testing calls for a variety of test cases, you can still leverage 
your functional tests by repurposing them, and their test data scenarios, for various 
types of performance testing such as:

• Capacity Testing: Increasing the number of application users 

• Load Testing: Increasing the number of simultaneous transactions

• Volume Testing: Increasing the volume of data handled by the system

• Stress Testing: Testing application behavior at loads beyond capacity

• Soak Testing: Refers to examining the impact of load over time

Regardless of the type of test, the important concept to keep in mind is this:

Any volume or variety of data can be configured by a test data scenario and 
generated in real-time by the TDG engine. Carefully selecting which test procedures 
to automate first and using the power and flexibility of GenRocket TDG to enable 
multiple categories of testing is the best way to maximize your test automation 
ROI.

With TDG, the speed and effectiveness of 
automated testing is no longer dependent on the 
availability of test data.



In the previous chapter, we described the use of Test Data Generation to support 
automated functional testing, repurposing test cases and test data scenarios for 
automated performance testing and rerunning tests for automated regression 
testing. This is an effective way to create immediate synergy between your test 
automation tools and your TDG platform. 

In this chapter, we explore some additional ways to utilize GenRocket TDG across 
all of your applications to drive additional operational efficiencies, benefits and 
value. The GenRocket platform is adaptable to almost any testing requirement and 
ways to leverage the power of TDG are limited only by the tester’s imagination. 
As you read the following test case descriptions, think about your own application 
requirements and how you might adapt these ideas to innovate new test data 
solutions for your testing environment.

Testing Workflows with Program-Driven Test Data

In transactional environments, like an airline reservation system or a credit card 
transaction processing system, the data used by the application during testing can 
be fluid and subject to multiple program-driven changes. With GenRocket TDG, 
testers are able to supply test data for any workflow condition by integrating the 
GenRocket API within the test case and dynamically loading test data scenarios to 
generate the required test data on-demand and in real-time

INNOVATING TEST DATA SOLUTIONS6



The API allows testers to have complete control over the entire testing workflow 
and have the software itself make branching decisions to determine what scenarios 
to load and dynamically modify how the test data will be generated as the 
application continues to run.

Here is the basic program workflow using the GenRocket API:
1. Load the first GenRocket test data scenario
2. Modify test data scenario conditions
3. Run the test data scenario
4. Test data is generated, then a SOAP or REST request is made, then the 

response is saved
5. The test script parses the response and makes a branching decision for 

loading the next scenario
6. Another (or the same) GenRocket test data scenario is selected and loaded
7. The system branches back to Step 2

Learn more about testing workflows with program-driven test data in this airlines 
reservations system use case.

Through the use of GenRocket’s API to control program-driven test data, testers 
can create and automate highly adaptable, intelligent and dynamic test cases 
for any workflow. The simulation of any real-world scenario with dynamically 
generated test data allows developers to continuously improve algorithms and 
code performance while testers catch application defects before code is released 
to production.

The GenRocket API allows a test case to dynamically 
modify the data conditions within the test data 
scenarios which enables them to dynamically 
generate synthetic test data that simulates real world 
production data in real-time.

https://www.genrocket.com/load-testing-a-soap-web-service-workflow/
https://www.genrocket.com/load-testing-a-soap-web-service-workflow/


Testing Data Interfaces and Real-Time Data Feeds

Depending on the industry, many QA organizations must test a variety of data 
interfaces and simulate real-time data feeds used by their applications. Some data 
feeds are tightly specified by data interchange standards, others are de facto 
standards or can be proprietary in nature.

For example, the EDI X12 (Electronic Data Interchange) standard widely used 
in healthcare and other industries, is governed by the Accredited Standard 
Committee (ASC). It defines the format and data structures for commonly used 
transactions that are exchanged between business and trading partners. In 
healthcare, EDI X12 allows online claims processing between insurance companies, 
healthcare providers, pharmaceutical firms and other medical suppliers or service 
organizations who must share sensitive patient care information.

In banking and financial services, some data interface standards are governed by 
trade associations such as NACHA, which defines messaging standards for the 
movement of electronic bill payments and direct deposits over the ACH network. 
Other standards have become de facto standards, like the FIX protocol used for the 
real-time electronic exchange of securities transactions. 



Over the years, data interchange standards have evolved into a blend of 
proprietary formats adopted by industry groups and others that are formalized 
and controlled by international standards bodies.

This complicates the testing process for applications that rely on data feeds. 
Testing data interfaces requires test data that accurately simulates real-world 
transactions and structures the data in the precise data format used by that 
application (e.g., insurance claims, bank deposits, stock trades). The use of 
production data for this purpose is problematic for the following reasons:

• The use of sensitive customer or patient data puts data privacy and 
regulatory compliance at risk

• Boundary condition and negative testing is not well-supported by production 
data subsets 

• Manually creating synthetic data for simulating test data feeds is both 
complicated and tedious 

Testing data feeds is a perfect use case for Test Data Generation technology. If the 
TDG platform is pre-programmed to format data according to a particular data 
interface specification, then generating controlled, patterned and conditioned test 
data is simply a matter of defining the attributes of the data fields required by the 
test case and automating a simulated data feed.

This is precisely how GenRocket’s TDG platform operates. There is a wide variety of 
data interface formats already supported by the GenRocket platform. Many more 
are on our product roadmap and virtually any data feed, whether it’s an industry 
standard or a proprietary format, can be created as a custom test data receiver in 
the GenRocket platform.

Here is list of data interface formats that are available now or in development for 
future release.

• EDI X12
• HL7
• NACHA
• BA12
• FIX
• SWIFT
• Complex XML (XSD-driven)

If you would like to learn more about data feed testing using GenRocket’s TDG 
platform, read our blog post, Solving the Test Automation Challenge for EDI Data 
Feeds and download our case study, Test Data Generation for Healthcare Markets.

https://www.genrocket.com/solving-the-test-automation-challenge-for-edi-data-feeds/
https://www.genrocket.com/solving-the-test-automation-challenge-for-edi-data-feeds/
https://www.genrocket.com/healthcare/


Streamlining Combinatorial Testing with Pairwise

Combinatorial testing is required whenever an application must process a large 
number of input variables (e.g., web forms for shopping carts, advanced site search 
filters, software configuration settings) or must execute across a wide variety of 
operating environments (e.g., different hardware platforms, operating systems, and 
browsers across multiple release levels).

Before you know it, you are in “combinatorial explosion” of testing possibilities. For 
example, 10 input fields, each with 10 possible input variables, represents 10 billion 
testing combinations. For many applications, testing all possible combinations of 
input variables is next to impossible.

Consider this real-world example for software that many of us use every day. The 
dialog box in the illustration from Microsoft Word represents 12,288 possible testing 
combinations. Here is the math behind that number:  212 to represent 12 checkboxes 
each having 2 input possibilities that are multiplied by 3 for the “Field sharing” 
menu which contains 3 items.

Pairwise testing (or “all pairs testing”) is a testing methodology that 
drastically reduces the number of test combinations required while 
maximizing test coverage and defect identification.

A Real-World Example

Portion of Option Dialog in Microsoft Word



NIST research showed that most software bugs are caused by one or two 
parameters, with progressively fewer defects caused by the interaction of three or 
more parameters. This finding is referred to as the interaction rule and has dramatic 
implications for testing software with a high number of input variable combinations. 

The International Software Testing Qualification Board, or ISTQB defines Pairwise 
Testing as a black-box test design technique in which test cases are designed to 
execute all possible discrete combinations of each pair of input parameters. Here’s 
how it works. Imagine a software application module that has 3 input parameters 
with each one having three possible responses as illustrated in the chart below.

In this simple example, 12 test cases would be required to test all combinations of 
variables. However, by testing only the 2-pair combinations, the number of test 
cases can be reduced to 6 test cases – a reduction of 50% of test cases required.

As the number of variables increases, the number of testing combinations 
grows exponentially and the use of pairwise with test case reduction becomes 
increasingly powerful.  Pairwise allows testers to greatly improve test coverage 
without the need to test every conceivable combination. 

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf


There are methods to further reduce the number of test cases using pairwise. 
One common approach is to create equivalence partitions and identify boundary 
values. With equivalence partitioning, test cases are divided into classes of input 
data, like state values for text fields (e.g., valid integer, invalid integer, alpha/special 
character) or a range of numbers for numerical values. Then boundary values can 
be established to constrain the size of a numerical range or test the edge cases to 
identify the more likely errors that often occur at the boundaries.

Constraints also ensure that variable combinations that are not possible in real life 
are not included in the test. For example, for a given alarm system under test, if 
the state of its Switch variable is Off, then testing the state of its variables, Security 
Level and Action, would be impossible.

Following is GenRocket’s approach for maximizing test coverage with Pairwise:

1. Reduce the Number of Tests: 
With GenRocket Pairwise Combinatorics

2. Generate the Right Test Data: 
With GenRocket‘s Test Data Scenarios using Constraints

3. Automate Pairwise Test Execution:
By integrating GenRocket with test automation tools

GenRocket’s pairwise solution enables an efficient testing process that 
significantly reduces the number of tests, maximizes code and data coverage, 
minimizes false positives and improves overall testing accuracy. The more complex 
the combinatorial testing challenge, the greater the value of GenRocket’s TDG 
platform. 

GenRocket’s TDG platform can be used to conduct 
pairwise testing by generating test data that 
represents realistic input variable pairs controlled by 
constraints to limit the number of test cases required. 



Using TDG for AI and ML Applications

Artificial Intelligence (AI) and Machine Learning (ML) are two of the hottest 
buzzwords in the field of Information Technology. AI is behind the growing 
popularity of the Virtual Digital Assistant (VDA) as popularized by Google Home, 
Siri, Cortana and Alexa and used by consumers to answer questions and automate 
everyday tasks. Businesses are increasingly using VDAs for sales, marketing and 
customer service applications as well.

ML is a subset of artificial intelligence and is the enabling technology behind the 
rapidly growing field of predictive analytics. Machine learning uses sophisticated 
algorithms that allow computers to recognize patterns from current and historical 
data, learn from those patterns and then make predictions about future outcomes.

Machine Learning is used in a wide variety of business applications including:

• Recommendations Engine
• Fraud Detection
• Personalized Marketing
• Operational Efficiency
• Dynamic Pricing
• Risk Reduction
• Health Care Applications
• Insurance Applications
• Predictive Maintenance

When developers and data science practitioners think about new applications 
for AI, ML and predictive analytics, they often think the bulk of the work will be 
in the development of the algorithms and how to code them. One of the biggest 
challenges in developing applications for AI and ML is provisioning the data used 
to train, validate and test their algorithms for accuracy and robustness.

When perfecting a new algorithm for AI and ML applications, it is important to 
remember this:

High Quality Training Data & Test Data at Scale = Accuracy of AI & ML 
Algorithms

The greater the volume and variety of training data used, the more accurate and 
robust the model for predicting future outcomes will be. This creates a major 
challenge for testers:  How to provision a high volume of high-quality training data 
without spending an enormous amount of time collecting, labeling, classifying, 
cleaning, pruning, normalizing, and formatting the data with the help of domain 
experts who understand the data requirements.



These three datasets must be different to ensure the integrity of AI or ML 
algorithms and how they will perform in real-world scenarios. That’s where 
GenRocket’s ability to generate high-volumes of data based on a predefined data 
model, data attributes and patterns of data variation is a perfect match for AI and 
ML application development. 

Once the domain expert specifies the data requirements, GenRocket’s TDG engine 
generates controlled and conditioned data at the rate of 10,000 rows per second. 
By partitioning the engine into multiple instances, performance can be increased 
exponentially to make same-day provisioning for datasets having millions or even 
billions of rows a possibility.

If you would like to learn more about GenRocket’s TDG solution for training 
and testing AI and ML applications, read the case study Test Data Solutions for 
Artificial Intelligence and Machine Learning Applications. 

1. COLLECT 
DATA

2. PREPARE 
DATA

4. TRAIN 
DATA

5. TEST AND
VALIDATE

MODEL

6. DEPLOY
MODEL

3. SPLIT DATA

VALIDATION SET

ITERATE

TRAINING SET

Also, important to remember is the need for three different kinds of data during the 
development process: One dataset to train the model, one dataset to validate the 
model and one dataset to test the model.

https://www.genrocket.com/ai-and-ml/
https://www.genrocket.com/ai-and-ml/


The 2018-19 edition of the World Quality Report, a comprehensive research report 
covering the key trends shaping quality assurance and testing, examined the 
benefits realized through test automation. Based on a survey of 1700 executives 
across 10 different industry sectors and 32 countries, the report identified a broad 
range of benefits that describe the different ways test automation brings value to 
their organizations.

While the results show a mostly even distribution of responses, “better test 
coverage” was identified as the leading benefit realized by QA executives. 
Although the number of respondents who identified this benefit is higher than 
recorded in previous years, it’s hard to say exactly how much their test coverage 
actually improved as a result of automation. Did coverage only improve by 10% 
resulting in a marginal benefit, or was it dramatically higher leading to a game-
changing level of improvement? 

REALIZING OPERATIONAL BENEFITS 7

https://www.microfocus.com/media/analyst-paper/world_quality_report_analyst_report.pdf


From the findings above, it’s hard to say the full potential of test automation 
was realized by the organizations surveyed. One can only assume that given the 
challenges cited for test data provisioning, combined with the learning curve for 
adopting new technology, most organizations likely have a long road ahead before 
they reach full coverage and realize the full benefits of quality at speed.

When asked about the principle benefits they failed to realize, 36% of respondents 
said, “better detection of defects”. This missed expectation supports the notion 
that testers are still in search of the right variety and volume of test data needed 
to fully test their code and to avoid the problems of false positives and false 
negatives. 

The message from the market research is clear, QA leaders are fully committed to 
test automation as the best long-term strategy for improving test coverage and 
maximizing the quality of code released to production. However, they struggle with 
transitioning from early adoption of the technology to its full deployment. 

QA managers expect several benefits from test automation:

• Better test coverage

• Better control and transparency of test operations

• Better reuse of test cases

• Reduction of test cycle time

• Better detection of defects

• Reduction of test costs

And according to the 2018-19 World Quality Report, over 60% of QA executives 
reported seeing some level of improvement in each of these areas. As they 
overcome the challenges of test data provisioning and improve their proficiency 
in the application of test automation technology, those benefits will become more 
fully realized.

Test automation is capable of accelerating the testing 
process exponentially, and with the addition of TDG, 
it allows QA organizations to run more tests with 
greater test data variety and volume to maximize 
coverage.



Achieving Test Automation Synergy

Test automation synergy is all about maximizing the benefits of combining CI/CD 
pipelines with test automation and test data generation. The answer to achieving 
quality at speed lies at the intersection of these three technologies. If one is 
omitted, or their best practices not followed, the level of quality and operational 
efficiency realized will fall short of expectations.

The following six steps summarize the keys for creating synergy between CI/CD 
pipelines, test automation and test data generation:

1. Integrate TDG with CI/CD and Test Automation
Establish a fully integrated test automation environment that includes 
your CI/CD server (e.g., Jenkins), your testing framework and tool set (e.g., 
Selenium), and your test data generation platform (e.g., GenRocket). Start 
with a Proof of Concept, select appropriate use cases that will create quick 
wins, and map out your test automation deployment strategy. GenRocket has 
a structured POC program that will assist you in getting started and ensuring 
a successful experience with this new and powerful technology combination.

2. Enable Self-Service Provisioning
Identify some functional, performance and regression test combinations and 
provide testers with access to the integrated test automation environment. 
Ensure they are trained in the use of productivity features such as GenRocket 
Presets (Test Data Scenario templates) and Test Data Suites (a scriptless 
wizard for Test Data Scenario creation). The nature of the test data that can 
be generated is limited only by the tester’s imagination. GenRocket TDG 
enables a self-service alternative to the centralized model associated with 
traditional Test Data Management systems.

3. Facilitate Collaborative Test Design
Encourage testers to share their knowledge of test case and test data 
designs. Take advantage of shared repositories for reusable test cases and 
test data scenarios. This provides testers with ready access to pre-built 
tests that generate test data on-demand. Where possible, encourage testers 
to reuse and repurpose their test case/test data designs for multiple test 
operations. To create a secure environment GenRocket provides the ability to 
control access to specific TDG resources using the GenRocket Teams feature.



4. Phase Out Production Data 
Transition the use of production data to Real-Time Synthetic Test Data 
generated by the TDG platform. This approach allows you to phase out the 
use of sensitive customer data, improves test data quality and accelerates the 
test data provisioning process. It also reduces the bottleneck associated with 
centralized provisioning and allows the QA team to directly control the nature 
of the test data used for testing. Gradually increase the use of real-time 
synthetic test data to 90% of the data required for testing.

5. Eliminate Data Masking
Prioritize your transition from production data to real-time synthetic test data 
by isolating Personally Identifiable Information (PII) and thereby eliminating 
the requirement for data masking. This saves time and eliminates the cost and 
complexity of traditional Test Data Management systems. At the same time, 
this step removes the risk of a data privacy breach while ensuring compliance 
with all data privacy laws. 

6. Implement TDG Best Practices
Stay current on the best practices for test case and test data design methods. 
Utilize GenRocket University, an online educational resource, to advance the 
skill level of your testing staff. Consult with GenRocket Certified Partners 
for the most effective and efficient way to deploy and operate the TDG 
platform. This will streamline the process of scaling up your test automation 
environment as you maximize the benefits of test automation as well as your 
return on investment. 



Take the First Step Toward Test Automation Synergy

Are you ready to begin the journey toward achieving test automation synergy? 
Getting started is easy and GenRocket is ready to provide all the assistance you will 
need to successfully implement a Fully Integrated Test Automation Environment as 
illustrated by the diagram below.

REQUEST A LIVE DEMONSTRATION

Start with a live demonstration of GenRocket TDG integrated with CI/CD and test 
automation environment. Ask questions of TDG experts and learn how your QA 
organization can benefit from the power of TDG technology.

Then work with a GenRocket Certified Partner to conduct a Proof of Concept 
based on 1, 2 or 3 representative test cases that will prove-in the technology and 
allow your team to experience the power and impact of GenRocket TDG first hand. 
Just click the link below to get started.

Test Data Generation Platform

Test Automation Platform

Application Under Test

executes launches

Scripting or
Compiled Language

Test Automation
Platform

Real-Time Synthetic Test Data:
Generated in real-time when it’s
needed and can be discarded when
testing is done.

Test
Data

Test
Data

Test
Data

Test Data

Batch File or
Shell Script

Test
<<component>>

Automation
Server

(e.g. Jenkins)
<<component>>

Test1

<<component>>
GenRocket

Engine

<<component>>
Scenario

<<component>>
Scenario

<<component>>
Scenario

<<component>>
GenRocket

Engine

<<component>>
GenRocket

Engine

<<component>>
Test2

<<component>>
Test3

<<component>>
Automation

Script
(e.g. Selenium)

AUTOMATE1

VALIDATE CODE4

INTEGRATE2 GENERATE3

FULLY INTEGRATED TEST AUTOMATION ENVIRONMENT

https://www.genrocket.com/demo-request/


GenRocket, Inc.
2930 East Ojai Ave.
Ojai, CA 93023, USA

1-805-836-2879 info@genrocket.com

Think Differently About Test Data

Contact Us

Visit us at www.genrocket.com

http://www.genrocket.com

	Embracing Quality at Speed   
	Thinking Differently About Test Data
	The Importance of Test Data Quality 
	Integrating TDG with CI/CD
	Maximizing Test Automation ROI
	Innovating Test Data Solutions
	Realizing Operational Benefits 

