
GENROCKET CASE STUDY
CI/CD Pipeline Integration for Insurance Applications

BACKGROUND

THE TECHNICAL CHALLENGE

A major insurance company was using a traditional Test Data Management (TDM) platform to
provision test data for testing a variety of insurance applications. The business is diversified into
a number of insurance categories including life, health, accident, critical illness, dental, vision,
disability and related products such as annuities and retirement planning. Their insurance products
are intended for both individuals and families as well as for businesses and organizations. They
have more than 100 applications with complex data structures that all require continuous testing
to maximize quality and minimize time to market.

Their TDM solution was proving to be costly and complicated. At the same time, manually
provisioned test data had become a bottleneck as they streamlined their software development
process into a Continuous Integration and Continuous Delivery (CI/CD) pipeline. They chose the
Jenkins framework as the platform for automating all aspects of the build/test/release function.

Jenkins is the leading platform for CI/CD pipelines. It is open source, scalable, intuitive and
supports a wide array of plugins to extend its functionality. Jenkins allows developers to compile
code using a shared version control repository to accelerate the development process without
introducing unnecessary errors. It allows automated testing that facilitates unit and integration
testing into the CI/CD pipeline.

IT leaders at this insurance company soon found their TDM solution was too cumbersome to keep
pace with the accelerated speed of development. They wanted a more nimble process allowing
testers to generate any kind of test data on-demand with a simple self-service provisioning model.
They began working with GenRocket and its Test Data Generation (TDG) approach for creating
any kind of test data for any application requirement on-demand and in real-time using secure,
synthetic test data.

To fully address the technical and operational requirements of this insurance company, GenRocket
needed to integrate its TDG engine with the Jenkins CI/CD server and its automated test
environment. The test data solution needed to be fast, economical, seamless, and easy to use. The
goal was to replace the Test Data Management system and its centralized provisioning process
with a more automated, cost-effective and decentralized approach.

GENROCKET’S JENKINS SOLUTION

GENROCKET SUPPORT FOR A JENKINS
AUTOMATION FRAMEWORK

Jenkins can easily run the GenRocket Engine to generate synthetic test data on-demand. Here’s
how it works. The Jenkins pipeline starts and calls the GenRocket Engine using the GenRocket
API. Then the GenRocket Engine runs a test data Scenario to generate the data. The GenRocket
Scenario specifies the type of patterned and conditioned test data needed and is based on a data
model that represents the production data. Jenkins then consumes the test data and executes the
appropriate test scripts. The process is seamless, easy to configure and completely automated.

How Jenkins can easily run the GenRocket Engine to generate data:

•	 Jenkins can call GenRocket Engine
•	 The GenRocket Engine runs the Scenario to generate the data
•	 Jenkins can consume the test data

To support automated testing, GenRocket Scenarios can be called via an automation framework
(e.g. Selenium). The GenRocket API can then be used to modify GenRocket Scenarios in real time
for each test case. Based on the data requirements (i.e. CSV files, databases, etc.) GenRocket can
populate the required data sources in the format required by the test cases.

•	 GenRocket Scenarios can be called via an automation framework.
•	 The GenRocket API can be used to modify GenRocket Scenarios in real time.
•	 GenRocket can populate required sources with data so they can be used by the test cases.

Equally important was the requirement to provision test data representing any of the complex
data structures associated with any of the insurance applications with full referential integrity
preserved.

To that end, GenRocket developed an integration with Jenkins to incorporate real-time synthetic
test data generation into a CI/CD pipeline to enable continuous end-to-end testing that ensures
quality while keeping pace with the speed of development

1. Jenkins
 Pipeline starts

2. Calls GenRocket
 Engine

3. Engine runs
 Scenario

4. Generates
 Data

5. Test consumes
 Data

EASE OF DEPLOYMENT
Deploying GenRocket into your CI/CD pipeline is easy. There are just a few simple steps to take
and they are described below to provide a basic understanding of the process. A more detailed
explanation is available in the resource library on the GenRocket website.

Simply install the GenRocket runtime on the Jenkins Server. Downloading and installing the
GenRocket runtime on the Jenkins server is similar to downloading and installing GenRocket on
any local computer. Now configure the Jenkins server. Once installed, set the Environment variable
on the Jenkins server via the Jenkins GUI (see screenshot below).

1. Test Case starts 2. Test Case calls
GenRocket Scenarios

3. Test Data is generated and
 inserted into Test Case

4. Test Case is executed
 and returns Results

Add the Jenkins server to the GenRocket platform and update the resource variables with the
appropriate values with respect to Jenkins Server. Once configured the “ServerProfile.grp” can be
placed in .genrocket folder of Jenkins server (see screenshot below).

Create a Jenkins Job to run GenRocket Scenarios. In Jenkins, create a new Freestyle project and
add the shell script to execute the GenRocket Scenarios (see screenshot below).

Here’s an example of the Shell script which will execute the Scenarios in $HOME/scenarios folder.
You can easily modify this script to run your Scenarios.

#!/bin/bash
cd ~/scenarios
genrocket -r UserScenario.grs

Now run the Jenkins job and view the output (see screenshot below). When the Jenkins pipeline
starts, Jenkins will call the GenRocket Engine. The GenRocket Engine runs the Scenario to
generate the data and Jenkins can consume the test data via its automation framework.

This easy deployment process allows anyone to provision complex test data for any test case on-
demand to perform end-to-end testing in a CI/CD environment.

Using GenRocket’s Test Data Generation platform, this insurance company was able to meet all of
their test data challenges and realize the following important benefits:

•	 Generate test data for any insurance application on-demand and in real-time
•	 Integrate with Jenkins to streamline the development process in a CI/CD pipeline
•	 Automate the testing process using GenRocket’s API to generate and consume test data
•	 Replace a costly and cumbersome TDM process with an easy and cost-effective solution

THE OUTCOME

If you would like to know more about GenRocket’s Test
Data Generation platform and our industry solutions,
please visit our website at www.genrocket.com.

http://www.genrocket.com

