
ENTERPRISE TEST DATA
FEATURES
March 2019

ARCHITECTURE
The GenRocket architecture is component-based with five key components (shown below). This
architecture provides complete flexibility in how complex test data challenge can be solved.

GenRocket Term Think of it like… Example

Domain A database table A user database table

Attribute A column in a database table A column in the user database
table - Name, Email.

Generator The component that generates
test data for an Attribute A “NameGen” Generator

Receiver The component that formats
the test data from a Generator

XML, SQL, JSON, Web Services,
JDBC

Scenario
Instructions for the GenRocket
Runtime to generate test data

A user Scenario that generates
user test data

SYNTHETIC DATA GENERATION
While traditional Test Data Management solutions depend on copying / virtualizing and then
masking production data, GenRocket’s synthetic Test Data Generation approach offers dramatic
benefits including much lower cost, 100% security, and a much simpler implementation process.

Synthetically generated data has many advantages over production data in that production
data is not conditioned and only contains one set of business logic – whatever the logic was in
the database. Synthetic data can be conditioned and controlled so different business logic can
be generated and negative as well as all kinds of positive test data can be created for testing
environments.

Generators

Patented Technology

The U.S. Patent was awarded in January 2017. #9,552,266 B2 for systems
and methods for test data generation (test data generation with parent-
child relationships).

•	 GenRocket currently has 222 Generators. All Generators have multiple parameters that can
be configured to meet a particular test data need.

•	 New Generators can be added in 1 to 2 days and usually at no cost unless they are custom /
proprietary in nature.

•	 Unicode (UTF-8) is supported so any natural language (Arabic, Japanese, Chinese,
Cherokee, etc.) as well as many non-spoken languages (music notation, mathematical
symbols, Emoticons, etc.) can be generated.

•	 Linked Generators: Generators can be combined by using the Linked Generators feature.
As shown below, multiple Generators can be linked and their output can be queried or used
so that the generated data reflects just about any business logic that is required. Linked
Generators can also be saved as a “Preset” so that once a Linked Generator is configured it
can be re-used.

Attribute

Eval-Linked
Generator

Mid-Linked
Generator

Eval-Linked
Generator

Final-Linked
Generator

Types of Test Data that can be generated (partial list)

Parent-Child-Sibling relationships with Referential Integrity

Query Generators

List Generators

1.	 Patterned

2.	 Realistic

3.	 Sequential

4.	 Random

5.	 Edge Case / Negative

6.	 Null

7.	 Permutations

8.	 Percentages

9.	 Calculations

•	 All GenRocket Domains maintain referential integrity

There are five query Generators that have different capabilities. Data can be queried from a
database or a file and the data can be blended with synthetically generated data.

List Generators allow customers to save their own custom lists in a GenRocket Generator.

10.	Images

11.	 Dates

12.	Languages

13.	Emoticons

14.	Credit cards

15.	 Identification numbers

16.	Addresses (in many countries)

17.	 Names (in many countries)

Pattern Realistic Sequential Random Edge Case Null

firstName1 Ms. Tereasa F. Saldana 001-01-0001 749-40-0182 749-40-0182 749-40-0182

firstName2 Mr. Everette Q. Groom II 001-01-0002 797-59-7445 797-59-7445 null

firstName3 Mr. Jules U. Hackney Jr. 001-01-0003 135-93-8060 135-93-8060 135-93-8060

firstName4 Mrs. Kristina J. Brick 001-01-0004 214-82-8447 214*82*8447 null

firstName5 Mr. Francisco M. Grimes II 001-01-0005 170-60-5224 170-60-5224 null

firstName6 Dr. Iona D. Starrett 001-01-0006 302-76-0978 302-76-0978 null

firstName7 Ms. Patricia O. Ingraham III 001-01-0007 266-20-5659 266-20-5659 266-20-5659

firstName8 Ms. Tracee M. Farah 001-01-0008 005-57-7667 005#57#7667 005-57-7667

firstName9 Mr. Alva I. Ziegler Jr. 001-01-0009 490-48-8084 490-48-8084 null

firstName10 Dr. Mike T. Youngblood II 001-01-0010 471-29-7519 471-29-7519 null

DATA MASKING

RECEIVERS

GenRocket has the ability to query and mask production data. The masked data can be blended
with synthetically generated data or used as is. GenRocket offers two approaches to data masking:

A Receiver receives generated data and morphs it into a usable format. There are over 44 different
types of GenRocket Receivers. Receivers can be quite simple in design or more complex where
multiple Receivers can be combined to format complex data; for example creating synthetic
medical records in the exact format that matches the medical records in production.

Receivers can talk to just about any database, can work over Web Services and can talk to just
about any kind of mainframe.

GenRocket is able to support just about any customer requirement due to the combination of
Generator and Receiver components. New GenRocket Receivers can be added in 1 to 2 weeks
usually at no cost unless they are custom / proprietary in nature.

GenRocket currently offers 44 Receivers (partial listing):

Receiver Examples.

1.	 XML (+ Nested XML)

2.	 JSON (+ Nested XML)

3.	 CSV

4.	 SQL

5.	 Delimited

6.	 Excel

7.	 Fixed File

8.	 Image

9.	 SQL

10.	MySQL

11.	 MongoDB

12.	Nested Files

13.	REST

14.	SOAP

15.	Health Care formatted data (e.g. HL7 and EDI)

16.	Financial Services formatted data (e.g. BAI2)

SDR / Synthetic Data Replacement

Obfuscation / Masking

In the GenRocket Synthetic Data Replacement process sensitive records are identified and are
replaced by fully secure synthetic data. Sensitive production data never leaves the source location
so this is a fully secure process.

In the obfuscation process GenRocket Generators obfuscate PII (Personally Identifiable
Information) from the data set. The SDR (Synthetic Data Replacement) approach is recommended
over this approach as the SDR delivers data that is higher quality test data than masked
production data.

DATA MODEL SETUP + LIFECYCLE MANAGEMENT
GenRocket provides a logical, structured approach to setting up an organization’s data model
inside GenRocket. Most enterprises will have many applications /databases, will have common
entities between the applications/databases (e.g. users and/or addresses in multiple systems), will
have ongoing release cycles with new versions of software being released frequently and data
models in many of the applications will change frequently. GenRocket is designed to support all of
these needs.

•	 Many applications / databases - Each application or database will usually be reflected
within GenRocket as a Project. There is no limit on the number of Projects in GenRocket.

•	 Organization Variables - Organization Variables is how GenRocket maintains consistency
across Projects so that, for example, a user or an address in one Project can be consistently
related to a user or an address in another Project.

•	 Versioning - GenRocket allows new Project Versions to be created as your software versions
change.

•	 Intelligent Automation - GenRocket has an intelligent automation feature called “Buddy”
that automates many background systems within GenRocket. Buddy allows an entire Project
Version to be selected and duplicated into a new Project Version – Buddy saves a huge
amount of time for this and other system tasks and greatly reduces human error.

•	 Domain Refactoring - GenRocket understands that data models are dynamic and can
change frequently. When changes are made (for example - additions, deletions, changes in
hierarchy) at the Domain and Attribute level those changes are automatically updated in all
the Scenarios in that Project unless that Scenario is locked.

•	 Data Model Setup

1.	 XTS – XTS stands for Extract Table Schema. In this approach GenRocket can retrieve
one, many or all table schemas from a given database by connecting directly to the
database via JDBC to extract the database’s schema. The extracted schema is saved
to an encrypted file. The encrypted file can then be imported from the GenRocket
web application to automatically do the following:

•	 Import the Data Schema
•	 GenRocket XTS and Data Warehouse setup the Domains, Attributes and add

Generators automatically
•	 Use GenRocket Wizard to establish Parent-Child-Sibling relationships for the

Domains
•	 Swap out auto-assigned Generators for correct Generators and modify Generator

parameters

2.	 DDL – DDL or Data Definition Language is a method that GenRocket uses to import
one or multiple Domains from DDL and quickly set up the data model.

3.	 CSV Import – Domains can be created via a CSV import

4.	 ScratchPad – Domains can quickly and easily be created through the Scratchpad
feature.

5.	 Domain Presets – Commonly used Domains can be created by using the Domain
Preset feature. Domains can also be saved as a Preset within an Organization so that
the Preset can be re-used in any Project.

6.	 Project Presets – Entire GenRocket Projects can be saved as a full or partial Project
so that they can be re-used on another Project within an Organization.

GENROCKET API’S

The GenRocket Runtime API

The GenRocket REST API

GenRocket’s Runtime and REST API’s allow organizations to leverage the power of GenRocket’s
data generation engine in an infinite number of flexible ways. The Runtime API can be particularly
powerful when used in end-to-end / workflow testing applications where data needs to be
dynamically changed in real time based on rules and logic. For example, end to end testing of a
credit card payment system or an airline flight tracking system. The REST API is powerful when
organizations want to hide the GenRocket GUI and use GenRocket functionality through their own
testing tool interface.

•	 The GenRocket Runtime application interface (API) allows programmers to access the
GenRocket Runtime to directly modify and create scenarios from their own programs.
Programmers will have the following control over a Scenario:

1.	 Modify Domains, Attributes, Generators and Receivers

2.	 Add Domains, Attributes, Generators and Receivers to an existing Scenario

•	 There are three interfaces for accessing the GenRocket Runtime API

1.	 The GenRocket Binary Runtime

2.	 The GenRocket Realtime Socket Engine

3.	 The GenRocket Realtime REST Engine

The GenRocket REST API gives advanced, licensed GenRocket users the ability to access all
major GenRocket web functions from their own custom built in-house applications. Keep your
customers solely within the experience of your own custom in-house application by seamlessly and
automatically managing the creation and updating of GenRocket Domains, Attributes, Receivers &
Scenarios via our GenRocket Restful web services.

SELF SERVICE TEST DATA
Many organizations have their own home-grown / in-house developed testing applications and
they want their testers to request test data from within that testing application. GenRocket’s Multi-
User Server (GMUS), used in conjunction with the GenRocket REST API, allows large volumes of
simultaneous test data requests to be managed from hundreds or thousands of testers.

INTEGRATION INTO CI/CD PIPELINES
AND JENKINS
Most testing organizations today are moving in the direction of
Continuous Testing and many are using Jenkins to assist with the
testing automation process. GenRocket Scenarios can generate small
quantities of test data for functional testing in about 100 milliseconds
so GenRocket is ideal for CI/CD pipelines and Jenkins.

Multi User Server (GMUS)

Tester

Tester

Tester

Client
Testing

Application

Test Data
Requests

Multi User
Server

Scenarios

API

API

API

GENROCKET PARTITION
ENGINE
The GenRocket Partition Engine is used to
generate hundreds of millions, to billions
or even trillions of rows of test data in a
short period of time. This is accomplished
by partitioning the load to generate huge
amounts of test data across multiple
GenRocket instances running within a given
server. When generating enormous amounts
of test data, the load can be partitioned
across multiple servers with each running
multiple GenRocket instances.

On a given computer, depending on the
number of CPU Cores, Memory and Operating
System (OS), GenRocket may generate
between 10,000 to 15,000 rows of test data
per second. If we base our calculations
on the idea that GenRocket is running on
one very slow computer, then the following
test data generation calculations can be
approximated:

•	 10,000 rows every second
•	 600,000 rows per minute
•	 1,000,000 rows every 1 minutes and 40

seconds

As seen from the approximations above,
generating test data greater than 10
million rows takes far too much time. Thus,
depending on the number of instances
partitioning and generating test data across
multiple servers, it is possible to drastically
reduce the amount of time to generate the
required test data.

If 1,000,000,000 rows of test data were
generated on 10 servers each running 10
partitioned GenRocket instances (using
the Partition Engine), it would take
approximately 18 to 20 minutes to generate
all 1,000,000,000 rows of test data.

HOSTING
Virtual Private Cloud

•	 This environment is hosted on AWS servers, is secure, redundant, backed up, managed 7 X
24 X 365 and updated daily and weekly depending on the frequency of software releases
and the cost of this hosting model is included in the GenRocket software license.

•	 Independent security penetration tests have been run to validate the security of the hosted
system.

•	 This is the recommended hosting approach for all smaller GenRocket customer deployments

•	 As GenRocket is a synthetic test data system it is secure by nature

•	 No customer data is stored in the GenRocket system

•	 GenRocket Scenarios are encrypted and there is no data in the Scenarios

•	 All data generation Scenarios run inside the secure corporate firewall

•	 No customer data is ever accessed from outside the corporate firewall

•	 User licenses are validated to ensure all users on the system are valid

•	 All passwords are SHA-256 one-way encrypted

•	 There are four levels of permissions on the system

•	 Only authenticated and licensed users can run GenRocket Scenarios

•	 The GenRocket Runtime that runs the Scenarios is a secure Java program

•	 All GenRocket JAR’s are validated with a checksum

•	 SSO (Single Sign On) is available to authenticate users

Virtual Private Cloud

1. GenRocket Virtual
 Private Cloud

2. GenRocket
 Scenario

3. Your Corporate
 Firewall (HTTPS)

4. Local Machine +
 GenRocket Runtime

5. Test Data

Dedicated Private Cloud

•	 This environment is hosted on AWS servers, is secure, redundant, backed up, managed 7 X
24 X 365 and updated daily and weekly depending on the frequency of software releases;
the cost of this hosting model is in addition to the GenRocket software license as the
hosting and support is exclusively provided just for one client.

•	 Independent security penetration tests have been run to validate the security of the hosted
system design.

•	 As GenRocket is a synthetic test data system it is secure by nature

•	 No customer data is stored in the GenRocket system

•	 This is the recommended hosting approach for all larger more intensive GenRocket customer
deployments

•	 GenRocket Scenarios are encrypted and there is no data in the Scenarios

•	 All data generation Scenarios run inside the secure corporate firewall

•	 No customer data is ever accessed from outside the corporate firewall

•	 User licenses are validated to ensure all users on the system are valid

•	 All passwords are SHA-256 one-way encrypted

•	 There are four levels of permissions on the system

•	 Only authenticated and licensed users can run GenRocket Scenarios

•	 The GenRocket Runtime that runs the Scenarios is a secure Java program

•	 All GenRocket JAR’s are validated with a checksum

•	 SSO (Single Sign On) is available to authenticate users

Dedicated Private Cloud

1. GenRocket Virtual
 Private Cloud

2. GenRocket
 Scenario

3. Your Corporate
 Firewall (HTTPS)

4. Local Machine +
 GenRocket Runtime

5. Test Data

