
TEST DATA GENERATION
USE CASES
10 Ways to Use Synthetic Test Data to Increase Efficiency

Quality assurance teams historically struggle with provisioning test data for their automated test
environment. A survey of DevOps professionals (Delphix: 2017 State of Test Data Management)
describes test data provisioning as a “slow, manual and high touch process” reporting that 3.5
days and 3.8 people were needed to fulfill the average request for test data. For 20% of DevOps
professionals, the provisioning timeframe was over a week. Test data has become a bottleneck and
a barrier, especially for continuous integration and delivery environments.

GenRocket’s synthetic Test Data Generation (TDG) platform is designed to eliminate the
bottleneck by creating test data for virtually any test case on-demand and in real-time.

A recent study by IBM found that 30% to 60% of a testers time is spent searching, managing,
maintaining, and generating test data. This puts QA managers in a difficult spot as they look for
ways to streamline the provisioning process and utilize their testers more efficiently. GenRocket
customers have learned how to leverage the power of TDG for any type of testing operation (e.g.,
unit, functional, integration, performance, regression etc.) to accelerate and improve the quality of
test operations.

Most GenRocket customers begin their journey into the world of TDG with a Proof of Concept
(POC) to experiment with the technology and validate the use of real-time synthetic test data
in their automated test environment. Once they successfully complete the POC, they are ready
to broadly deploy GenRocket into their test environment. However, sometimes even the most
experienced QA managers need guidance for how to introduce TDG into their organization.

After a POC, the QA manager’s attention changes from asking “should I be using synthetic test
data to replace production data” to the more practical question: “when, where and how should I
use synthetic test data for maximum impact.”

We developed the following guidelines to help our customers follow the most effective path for
TDG deployment. Our goal is the same as their goal: Introduce GenRocket one application at
a time in a way that maximizes the impact on the quality and efficiency of test operations. The
following 10 questions will help you identify some “quick wins” for transitioning to GenRocket as
you gradually increase the level of synthetic test data used for software testing from 5-10% to a
level of 90-95% of your total test data requirements. In general, our customers find the higher the
percentage of real-time synthetic test data that is generated (versus production data), the greater
the level of efficiency and quality achieved throughout the QA operation.

As you assess the applications environment, data environment and test environment in your
organization, ask yourself these questions to identify the most impactful use of GenRocket.

AVERAGE TIME SPENT ON TEST DATA MANAGEMENT (TDM)

Create Data Manually Cloning Production and
Manually Cleansing

Other Methods

2%

34%

64%

Your company may have a mandate to remove Personally Identifiable Information (PII) from test
data to avoid the risk of a data breach and/or ensure compliance with privacy regulations. Even if
you don’t, GenRocket can instantly provide synthetic test data to take the place of pruned, masked
and obfuscated production data. Eliminating PII from the testing process is one of the first areas
where GenRocket can have an immediate impact.

Test cases often call for testing boundary conditions, which means testing all edge cases to
identify unexpected outcomes. This requires test data that has been conditioned for minimum/
maximum values, a wide variety of data patterns and the use of all potential data permutations.
GenRocket has 213 data generators with specific Generators for boundary conditions and
permutations and Generators for all common test data categories (see below).

1. DATA PRIVACY:
Where does your test data contain sensitive customer information?

2. BOUNDARY CONDITIONS:
Which of your test cases require boundary condition testing?

Pattern Realistic Sequential Random Edge Case Null

firstName1 Ms. Tereasa F. Saldana 001-01-0001 749-40-0182 749-40-0182 749-40-0182

firstName2 Mr. Everette Q. Groom II 001-01-0002 797-59-7445 797-59-7445 null

firstName3 Mr. Jules U. Hackney Jr. 001-01-0003 135-93-8060 135-93-8060 135-93-8060

firstName4 Mrs. Kristina J. Brick 001-01-0004 214-82-8447 214*82*8447 null

firstName5 Mr. Francisco M. Grimes II 001-01-0005 170-60-5224 170-60-5224 null

firstName6 Dr. Iona D. Starrett 001-01-0006 302-76-0978 302-76-0978 null

firstName7 Ms. Patricia O. Ingraham III 001-01-0007 266-20-5659 266-20-5659 266-20-5659

firstName8 Ms. Tracee M. Farah 001-01-0008 005-57-7667 005#57#7667 005-57-7667

firstName9 Mr. Alva I. Ziegler Jr. 001-01-0009 490-48-8084 490-48-8084 null

firstName10 Dr. Mike T. Youngblood II 001-01-0010 471-29-7519 471-29-7519 null

Sometimes you want to leverage specific sets of program data in your tests and combine that
data with secure, controlled, synthetically generated test data. For example, GenRocket can query
program data like Account ID’s or any other enumerated type of data and pull that data into a list
as part of a test data generation scenario. In another use case GenRocket can use synthetically
generated test data to create the conditions to retrieve a specific program data value. For
example, GenRocket might synthetically generate a male gender, of age 50 and an income greater
than $60,000 and those conditions would be used to query and retrieve a specific value from the
production database environment. This shows a powerful solution where synthetic test data is
blended with production data.

If your test operation requires high volume test data to conduct application performance testing
or endurance testing, GenRocket has the ability to generate synthetic test data at the rate of
10 thousand rows per second. And through the use of the GenRocket Partition Engine, a billion
rows of test data can be generated in under 20 minutes. This level of scalability also positions
GenRocket as a test data source for big data and machine learning environments.

When test data needs to be frequently refreshed, GenRocket can save time and streamline the
provisioning process by generating test data sets that reflect the most current data model. Testers
can refresh data sets on-demand, in real-time simply by executing GenRocket Scenarios that
reflect the current data model.

How do you get much better test coverage without having to run hundreds or thousands of tests?
All-pairs testing or pairwise testing is a combinatorial method of software testing that, for each
pair of input parameters to a system, tests all possible discrete combinations of those parameters.
The Pairwise approach is really compelling for testers but historically the challenge has been
the complexity and how to provision the right test data for the Pairwise tests. GenRocket is now
offering a Pairwise testing solution that is easier to use and with integrated test data provisioning.

3. BLENDED TEST DATA:
Do you want to blend production and synthetic data?

4. VOLUME DATA:
Which of your tests require the highest volume of test data?

5. DATA REFRESH:
What test data is subject to frequent changes and data refresh?

6. PAIRWISE TESTING:
Can you get full coverage with only a fraction of the tests?

Depending on the application under test, your data may need to be in a special format like
XML, JSON, CSV, DB2, VSAM, SQL or even an industry-specific format like HL7 for health care.
GenRocket Receivers generate test data in over fifty different formats to meet the compatibility
needs of any application. If you need a special test data format, consider GenRocket for meeting
this requirement.

When new applications are in development, there may be no production data available to use
for testing. Until now, the only alternative was to manually create the test data or wait until the
application was released to production and then start testing. With GenRocket, synthetic test
data designed for that application can be used for all types of tests including unit, integration,
functional and load testing of the new application before it is released to production.

Provisioning test data that changes dynamically in real time is needed for effective end to end
/ workflow testing. A test data generation system with a powerful API is a must for end to end
testing as there are so many combinations and rules that impact the test data. GenRocket’s API
can be programmed to look at the result of a test or query and dynamically change the test data
that is generated based on that result. A whole new level of automated end to end testing is
possible with API-driven, dynamically generated test data.

In a continuous testing environment, test data must also be continuously available. The GenRocket
TDG platform was built for speed and versatility to accelerate any form of testing with data that
reflects the most current version of the data model. Integrate GenRocket into a CI/CD Pipeline
with Jenkins for applications that have high frequency revisions and rapid time-to-market
requirements.

7. SPECIAL FORMATTING:
Does application testing require data with special formatting?

8. NEW APPLICATIONS:
Are you testing applications for which there is no production data?

9. DYNAMIC TEST DATA:
Do you need dynamic test data for end to end / workflow testing?

10. CI/CD PIPELINES:
Which applications have tight deadlines and frequent revisions?

DEVELOP YOUR OWN TEST DATA GENERATION
DEPLOYMENT PLAN

RECOMMENDED TEST DATA GENERATION
DEPLOYMENT MODEL

A summary of these guidelines for Test Data Generation Deployment is provided in the checklist
below. Use it to assess your applications and their respective test operations to target your own
priorities for introducing synthetic test data generation into your QA environment.

The checklist can be used as part of a formal process to deploy TDG across the organization. After
initial deployment, the use of TDG should be increased methodically, one application at a time, to
expand the percentage of synthetic test data to 90% or more of all test data. This will maximize
the efficiencies realized in terms of provisioning speed, cost-effectiveness, data quality and overall
simplicity of user operations.

Here are the steps we recommend for organzations getting started with TDG:

1. Identify up to three GenRocket TDG use cases. Conduct POC’s (Proof of Concepts)
2. Purchase licenses and deploy GenRocket for the POC use cases.
3. Conduct an assessment of the application environments, data environments and testing

environments. Develop a prioritized TDG deployment plan.
4. Expand the use of GenRocket based on the prioritized TDG deployment plan.
5. Measure synthetic test data use against a target of over 90% synthetic in all test data use

cases

Test Data Generation Deployment Checklist

TDG Guidelines Applications Test Operations Data Source

1. Data Privacy Application Name Test Cases ☐ TDG

2. Boundary Conditions Application Name Test Cases ☐ TDG

3. Blended Test Data Application Name Test Cases ☐ TDG

4. Volume Data Application Name Test Cases ☐ TDG

5. Data Refresh Application Name Test Cases ☐ TDG

6. Pairwise Testing Application Name Test Cases ☐ TDG

7. Special Data Formats Application Name Test Cases ☐ TDG

8. New Applications Application Name Test Cases ☐ TDG

9. Dynamic Test Data Application Name Test Cases ☐ TDG

10. CI/CD Pipelines Application Name Test Cases ☐ TDG

Do you need assistance with TDG deployment? GenRocket
can help by coordinating a professional services engagement
with one of our partners to design and deliver a Test Data
Generation roadmap tailored to meet the specific needs of your
QA organization. If you would like to know more about TDG
deployment assistance, please email info@genrocket.com.

APPLICATION ENVIRONMENT

DATA ENVIRONMENT

TESTING ENVIRONMENT

TDG DEPLOYMENT

The following framework provides a structured approach for conducting your assessment of the
application environments, data environments and testing environments.

Understand the applications and infrastructure that supports them and underlying databases.
Deliverable > Applications Audit: Identifies applications and infrastructure.

Understand the information flow through the application environment and the data.
Deliverable > Data Audit: Identifies data flow and data dependencies.

The current testing resources, test processes, testing tools and data provisioning processes.
Deliverable > Test Audit: Test data tool and framework integrations.

The TDG deployment plan for the organization.
Deliverable > TDG Deployment Plan: Prioritized plan for application testing, revised processes for
test data provisioning, data refresh and test data integration with tools and frameworks.

